3 research outputs found
Characterization of Endothelial Cells Associated with Hematopoietic Niche Formation in Humans Identifies IL-33 As an Anabolic Factor
Bone marrow formation requires an orchestrated interplay between osteogenesis, angiogenesis, and hematopoiesis that is thought to be mediated by endothelial cells. The nature of the endothelial cells and the molecular mechanisms underlying these events remain unclear in humans. Here, we identify a subset of endoglin-expressing endothelial cells enriched in human bone marrow during fetal ontogeny and upon regeneration after chemotherapeutic injury. Comprehensive transcriptional characterization by massive parallel RNA sequencing of these cells reveals a phenotypic and molecular similarity to murine type H endothelium and activation of angiocrine factors implicated in hematopoiesis, osteogenesis, and angiogenesis. Interleukin-33 (IL-33) was significantly overexpressed in these endothelial cells and promoted the expansion of distinct subsets of hematopoietic precursor cells, endothelial cells, as well as osteogenic differentiation. The identification and molecular characterization of these human regeneration-associated endothelial cells is thus anticipated to instruct the discovery of angiocrine factors driving bone marrow formation and recovery after injury
Endothelium-derived stromal cells contribute to hematopoietic bone marrow niche formation
Bone marrow stromal cells (BMSCs) play pivotal roles in tissue maintenance and regeneration. Their origins, however, remain incompletely understood. Here we identify rare LNGFR+ cells in human fetal and regenerative bone marrow that co-express endothelial and stromal markers. This endothelial subpopulation displays transcriptional reprogramming consistent with endothelial-to-mesenchymal transition (EndoMT) and can generate multipotent stromal cells that reconstitute the bone marrow (BM) niche upon transplantation. Single-cell transcriptomics and lineage tracing in mice confirm robust and sustained contributions of EndoMT to bone precursor and hematopoietic niche pools. Interleukin-33 (IL-33) is overexpressed in subsets of EndoMT cells and drives this conversion process through ST2 receptor signaling. These data reveal generation of tissue-forming BMSCs from mouse and human endothelial cells and may be instructive for approaches to human tissue regeneration
Only Hyperuricemia with Crystalluria, but not Asymptomatic Hyperuricemia, Drives Progression of Chronic Kidney Disease
BACKGROUND: The roles of asymptomatic hyperuricemia or uric acid (UA) crystals in CKD progression are unknown. Hypotheses to explain links between UA deposition and progression of CKD include that (1) asymptomatic hyperuricemia does not promote CKD progression unless UA crystallizes in the kidney; (2) UA crystal granulomas may form due to pre-existing CKD; and (3) proinflammatory granuloma-related M1-like macrophages may drive UA crystal-induced CKD progression. METHODS: MALDI-FTICR mass spectrometry, immunohistochemistry, 3D confocal microscopy, and flow cytometry were used to characterize a novel mouse model of hyperuricemia and chronic UA crystal nephropathy with granulomatous nephritis. Interventional studies probed the role of crystal-induced inflammation and macrophages in the pathology of progressive CKD. RESULTS: Asymptomatic hyperuricemia alone did not cause CKD or drive the progression of aristolochic acid I-induced CKD. Only hyperuricemia with UA crystalluria due to urinary acidification caused tubular obstruction, inflammation, and interstitial fibrosis. UA crystal granulomas surrounded by proinflammatory M1-like macrophages developed late in this process of chronic UA crystal nephropathy and contributed to the progression of pre-existing CKD. Suppressing M1-like macrophages with adenosine attenuated granulomatous nephritis and the progressive decline in GFR. In contrast, inhibiting the JAK/STAT inflammatory pathway with tofacitinib was not renoprotective. CONCLUSIONS: Asymptomatic hyperuricemia does not affect CKD progression unless UA crystallizes in the kidney. UA crystal granulomas develop late in chronic UA crystal nephropathy and contribute to CKD progression because UA crystals trigger M1-like macrophage-related interstitial inflammation and fibrosis. Targeting proinflammatory macrophages, but not JAK/STAT signaling, can attenuate granulomatous interstitial nephritis