74 research outputs found

    Localization theorems for nonlinear eigenvalue problems

    Full text link
    Let T : \Omega \rightarrow \bbC^{n \times n} be a matrix-valued function that is analytic on some simply-connected domain \Omega \subset \bbC. A point λ∈Ω\lambda \in \Omega is an eigenvalue if the matrix T(λ)T(\lambda) is singular. In this paper, we describe new localization results for nonlinear eigenvalue problems that generalize Gershgorin's theorem, pseudospectral inclusion theorems, and the Bauer-Fike theorem. We use our results to analyze three nonlinear eigenvalue problems: an example from delay differential equations, a problem due to Hadeler, and a quantum resonance computation.Comment: Submitted to SIMAX. 22 pages, 11 figure

    How Bad is Forming Your Own Opinion?

    Full text link
    The question of how people form their opinion has fascinated economists and sociologists for quite some time. In many of the models, a group of people in a social network, each holding a numerical opinion, arrive at a shared opinion through repeated averaging with their neighbors in the network. Motivated by the observation that consensus is rarely reached in real opinion dynamics, we study a related sociological model in which individuals' intrinsic beliefs counterbalance the averaging process and yield a diversity of opinions. By interpreting the repeated averaging as best-response dynamics in an underlying game with natural payoffs, and the limit of the process as an equilibrium, we are able to study the cost of disagreement in these models relative to a social optimum. We provide a tight bound on the cost at equilibrium relative to the optimum; our analysis draws a connection between these agreement models and extremal problems that lead to generalized eigenvalues. We also consider a natural network design problem in this setting: which links can we add to the underlying network to reduce the cost of disagreement at equilibrium

    Network Density of States

    Full text link
    Spectral analysis connects graph structure to the eigenvalues and eigenvectors of associated matrices. Much of spectral graph theory descends directly from spectral geometry, the study of differentiable manifolds through the spectra of associated differential operators. But the translation from spectral geometry to spectral graph theory has largely focused on results involving only a few extreme eigenvalues and their associated eigenvalues. Unlike in geometry, the study of graphs through the overall distribution of eigenvalues - the spectral density - is largely limited to simple random graph models. The interior of the spectrum of real-world graphs remains largely unexplored, difficult to compute and to interpret. In this paper, we delve into the heart of spectral densities of real-world graphs. We borrow tools developed in condensed matter physics, and add novel adaptations to handle the spectral signatures of common graph motifs. The resulting methods are highly efficient, as we illustrate by computing spectral densities for graphs with over a billion edges on a single compute node. Beyond providing visually compelling fingerprints of graphs, we show how the estimation of spectral densities facilitates the computation of many common centrality measures, and use spectral densities to estimate meaningful information about graph structure that cannot be inferred from the extremal eigenpairs alone.Comment: 10 pages, 7 figure
    • …
    corecore