70 research outputs found

    Chewing Gum for Intestinal Function Recovery after Colorectal Cancer Surgery: A Systematic Review and Meta-Analysis

    Get PDF
    Background. This meta-analysis was performed to assess the efficacy and safety of chewing gum in intestinal function recovery after colorectal cancer surgery. Methods. A systematic search was conducted in PubMed, Embase, Science Direct, and Cochrane library for relevant randomized controlled trials (RCTs) published until April 2017. Summary risk ratios or weighted mean differences with 95% confidence intervals were used for continuous and dichotomous outcomes, respectively. Results. 17 RCTs with a total number of 1845 patients were included. Gum chewing following colorectal cancer surgery significantly reduced the time to first passage of flatus (WMD −0.55; 95% CI −0.94 to −0.16; P=0.006), first bowel movement (WMD −0.60; 95% CI −0.87 to −0.33; P<0.0001), start feeding (WMD −1.32; 95% CI −2.18 to −0.46; P=0.003), and the length of postoperative hospital stay (WMD −0.88; 95% CI −1.59 to −0.17; P=0.01), but no obvious differences were found in postoperative nausea, vomiting, abdominal distention, pneumonia, and mortality, which were consistent with the findings of intention to treat analysis. Conclusions. Chewing gum could accelerate the recovery of intestinal function after colorectal cancer surgery. However, it confers no advantage in postoperative clinical complications. Further large-scale and high-quality RCTs should be conducted to confirm these results

    Mid-infrared Spectral Compression of Soliton Pulse in an Adiabatically Suspended Silicon Waveguide Taper

    Get PDF
    Spectral compression (SPC) can be used for generating narrow bandwidth and wavelength-tunable light sources, which have important applications in optical communication system, spectroscopy, and nonlinear microscopy. In this paper, we numerically demonstrate the high-degree SPC of the chirp-free femtosecond pulse at wavelength 2.4 μm in a 6-cm long adiabatically suspended silicon waveguide taper. The silicon waveguide taper is designed with a dispersion-increasing profile along the propagation distance z. Simulation results show that the SPC factor can be up to 10.9, along with the brightness-enhanced factor of 8.0 and negligible sidelobe. The impacts of the higher-order dispersion, higher-order nonlinearity, losses (including linear and nonlinear loss), and variation of Kerr nonlinear coefficient along z on the SPC are also investigated. It is found that variation of Kerr nonlinear coefficient γ(z) and linear loss are the dominant perturbation to the degradation of the SPC performance

    Efficient spectral compression of wavelength-shifting soliton and its application in integratable all-optical quantization

    Get PDF
    In this paper, we numerically demonstrate efficient spectral compression (SPC) of wavelength-shifting soliton in a chalcogenide strip waveguide. It is found that the profiles of group-velocity dispersion (GVD) and Kerr nonlinearity play key roles in determining SPC. After calculating the dispersion of Kerr nonlinearity and Raman spectrum for three kinds of chalcogenide materials, Ge11.5As24Se64.5 is chosen as the material for designing the chalcogenide strip waveguide (CSW). The geometric parameters of CSW are optimized to obtain the desired GVD and Kerr nonlinearity. Simulation results show that in the designed CSW, an input spectrum width of 52.04 nm can be compressed to 7.23 nm along with wavelength shift of 17 nm when the input peak power is 25 W. With the input peak power increasing to 75 W, the SPC is slightly weakened, but wavelength shift can be up to 190 nm. The proposed CSW is applied to integrated all-optical quantization and an effective quantization number of 3.66-bit is achieved. It is expected that our research results can find important applications in on-chip integrated spectroscopy, all-optical signal processing, etc

    Mid-infrared Self-Similar Pulse Compression in a Tapered Tellurite Photonic Crystal Fiber and Its Application in Supercontinuum Generation

    Get PDF
    In this paper, we design a tapered tellurite photonic crystal fiber (TTPCF) with nonlinear coefficient increasing along the propagation direction, and demonstrate the mid-infrared self-similar pulse compression of the fundamental soliton in such a TTPCF. When the variation of group-velocity dispersion, higher-order dispersion, higher-order nonlinearity, and linear loss are considered, a 1 ps pulse at wavelength 2.5 μm can be compressed to 62.16 fs after a 1.63-m long propagation, along with the negligible pedestal, compression factor Fc of 16.09, and quality factor Qc of 83.16%. Then the compressed pulse is launched into another uniform tellurite PCF designed, and highly coherent and octave-spanning supercontinuum (SC) is generated. Compared to the initial picosecond pulse, the compressed pulse has much larger tolerance of noise level for the SC generation. Our research results provide a promising solution to realize the fiber-based mid-infrared femtosecond pulse source for nonlinear photonics and spectroscopy

    Mid-Infrared Self-Similar Pulse Compression in a Tapered Tellurite Photonic Crystal Fiber and Its Application in Supercontinuum Generation

    Get PDF
    In this paper, we design a tapered tellurite photonic crystal fiber (TTPCF) with nonlinear coefficient increasing along the propagation direction, and demonstrate the mid-infrared self-similar pulse compression of the fundamental soliton in such a TTPCF. When the variation of group-velocity dispersion, higher-order dispersion, higher-order nonlinearity, and linear loss are considered, a 1 ps pulse at wavelength 2.5 μm can be compressed to 62.16 fs after a 1.63-m long propagation, along with the negligible pedestal, compression factor Fc of 16.09, and quality factor Qc of 83.16%. Then the compressed pulse is launched into another uniform tellurite PCF, where highly coherent and octave-spanning supercontinuum (SC) is generated. Compared to the initial picosecond pulse, the compressed pulse has much larger tolerance of noise level for the SC generation. Our research results provide a promising solution to realize the fiber-based mid-infrared femtosecond pulse source for nonlinear photonics and spectroscopy

    Self-similar Pcosecond Pulse Compression for Supercontinuum Generation at Mid-infrared Wavelength in Silicon Strip Waveguides

    Get PDF
    Self-similar pulse compression has important application in highly coherent supercontinuum (SC) generation. In this paper, we numerically present the mid-infrared self-similar picosecond pulse compression in a tapered suspended silicon strip waveguide, which is designed with exponentially decreasing dispersion profile along the direction of propagation. When the variation of the Kerr nonlinear coefficient ��(z), linear and nonlinear losses, higher-order nonlinearity, and higher-order dispersion are taken into consideration, the simulation result shows that a 1 ps input pulse centered at wavelength 2.8 μm could be self-similarly compressed to 47.06 fs in a 3.9-cm waveguide taper, along with a compression factor ��c of 21.25, quality factor ��c of 0.78, and negligible pedestal. After that, the compressed pulse is launched into a uniform silicon strip waveguide, which is used for the generation of SC. We numerically demonstrate that the coherence of the generated SC by the compressed pulse can be significantly improved when compared to that generated directly by the picosecond pulse. The simulation results can be used to realize on-chip mid-infrared femtosecond light source and highly coherent supercontinuum, which can promote the development of on-chip nonlinear optic

    High Degree Picosecond Pulse Compression in Chalcogenide-Silicon Slot Waveguide Taper

    Get PDF
    In this paper, we propose and design a chalcogenide (As2S3)-based slot waveguide taper with exponentially decreasing dispersion profile to realize high-degree pulse compression of low-power chirped solitons. Based on the waveguide taper designed, pulse compression of fundamental solitons, and chirped 2-soliton breather are both investigated numerically. With self-similar pulse compression scheme, a 1 ps input pulse is compressed to 81.5 fs in 6 cm propagation. By using 2-soliton breather pulses, a 1 ps chirped pulse is compressed to 80.3 fs in just 2.54 cm. This is the first demonstration of the feasibility of high-degree nonlinear pulse compression in As2S3-based slot waveguide taper

    Comprehensive analysis of passive generation of parabolic similaritons in tapered hydrogenated amorphous silicon photonic wires

    Get PDF
    Parabolic pulses have important applications in both basic and applied sciences, such as high power optical amplification, optical communications, all-optical signal processing, etc. The generation of parabolic similaritons in tapered hydrogenated amorphous silicon photonic wires at telecom (λ~1550 nm) and mid-IR (λ≥2100 nm) wavelengths is demonstrated and analyzed. The self-similar theory of parabolic pulse generation in passive waveguides with increasing nonlinearity is presented. A generalized nonlinear Schrödinger equation is used to describe the coupled dynamics of optical field in the tapered hydrogenated amorphous silicon photonic wires with either decreasing dispersion or increasing nonlinearity. The impacts of length dependent higher-order effects, linear and nonlinear losses including two-photon absorption, and photongenerated free carriers, on the pulse evolutions are characterized. Numerical simulations show that initial Gaussian pulses will evolve into the parabolic pulses in the waveguide taper designed

    Mid-Infrared Self-Similar Compression of Picosecond Pulse in an Inversely Tapered Silicon Ridge Waveguide

    Get PDF
    On chip high quality and high degree pulse compression is desirable in the realization of integrated ultrashort pulse sources, which are important for nonlinear photonics and spectroscopy. In this paper, we design a simple inversely tapered silicon ridge waveguide with exponentially decreasing dispersion profile along the propagation direction, and numerically investigate self-similar pulse compression of the fundamental soliton within the mid-infrared spectral region. When higher-order dispersion (HOD), higher-order nonlinearity (HON), losses (α), and variation of the Kerr nonlinear coefficient γ(z) are considered in the extended nonlinear Schrödinger equation, a 1 ps input pulse at the wavelength of 2490 nm is successfully compressed to 57.29 fs in only 5.1-cm of propagation, along with a compression factor Fc of 17.46. We demonstrated that the impacts of HOD and HON are minor on the pulse compression process, compared with that of α and variation of γ(z). Our research results provide a promising solution to realize integrated mid-infrared ultrashort pulse sources

    Dispersion-Engineered T-type Germanium Waveguide for Mid-Infrared Supercontinuum and Frequency Comb Generations in All-Normal Dispersion Region

    Get PDF
    In this paper, a T-type Germanium (Ge) waveguide with the all-normal dispersion profile is designed for mid-infrared supercontinuum (SC) and frequency comb generations. The nonlinearity coefficient of the designed waveguide is calculated as 30.48 W-1·m-1 at the initial pump wavelength of 3.0 μm. Moreover, the group-velocity dispersion is kept low and flat in the considered wavelength range. Simulation results show that with the designed waveguide, the highly coherent and octave-spanning MIR SC can be generated in the wavelength range from 1.85 to 9.98 µm (more than 2.4 octaves) when the pump pulse with wavelength of 3.0 μm, peak power of 900 W, and duration of 120 fs is launched into the 5 mm long waveguide. When the pulse train including 50 pulses at a repetition rate of 100 MHz is used as the pump source, the SC-based frequency comb is obtained
    corecore