132 research outputs found

    The Biomimetic Mineralization Closer to a Real Biomineralization

    Get PDF

    Enhancing the Unified Streaming and Non-streaming Model with Contrastive Learning

    Full text link
    The unified streaming and non-streaming speech recognition model has achieved great success due to its comprehensive capabilities. In this paper, we propose to improve the accuracy of the unified model by bridging the inherent representation gap between the streaming and non-streaming modes with a contrastive objective. Specifically, the top-layer hidden representation at the same frame of the streaming and non-streaming modes are regarded as a positive pair, encouraging the representation of the streaming mode close to its non-streaming counterpart. The multiple negative samples are randomly selected from the rest frames of the same sample under the non-streaming mode. Experimental results demonstrate that the proposed method achieves consistent improvements toward the unified model in both streaming and non-streaming modes. Our method achieves CER of 4.66% in the streaming mode and CER of 4.31% in the non-streaming mode, which sets a new state-of-the-art on the AISHELL-1 benchmark.Comment: Accepted by INTERSPEECH 202

    Language-Routing Mixture of Experts for Multilingual and Code-Switching Speech Recognition

    Full text link
    Multilingual speech recognition for both monolingual and code-switching speech is a challenging task. Recently, based on the Mixture of Experts (MoE), many works have made good progress in multilingual and code-switching ASR, but present huge computational complexity with the increase of supported languages. In this work, we propose a computation-efficient network named Language-Routing Mixture of Experts (LR-MoE) for multilingual and code-switching ASR. LR-MoE extracts language-specific representations through the Mixture of Language Experts (MLE), which is guided to learn by a frame-wise language routing mechanism. The weight-shared frame-level language identification (LID) network is jointly trained as the shared pre-router of each MoE layer. Experiments show that the proposed method significantly improves multilingual and code-switching speech recognition performances over baseline with comparable computational efficiency.Comment: To appear in Proc. INTERSPEECH 2023, August 20-24, 2023, Dublin, Irelan

    A novel signature based on microvascular invasion predicts the recurrence of HCC.

    Get PDF
    BACKGROUND AND OBJECTIVES: In hepatocellular carcinoma (HCC) patients, microvascular invasion (MVI) is associated with worse outcomes regardless of treatment. No single reliable preoperative factor exists to predict MVI. The aim of the work described here was to develop a new MVI- based mRNA biomarker to differentiate between high and low risk patients. METHODS: Using The Cancer Genome Atlas (TCGA) database, we collected data from 315 HCC patients, including mRNA expression and complete clinical data. We generated a seven-mRNA signature to predict patient outcomes. The mRNA signature was validated using the GSE36376 cohort. Finally, we tested the formula in our own 53 HCC patients using qPCR for the seven mRNAs and analyzing the computed tomography (CT) features. RESULTS: This seven-mRNA signature significantly correlated with length of recurrence-free survival (RFS) and overall survival (OS) for both the training and validation groups. RFS and OS were briefer in high risk versus low risk patients. A Kaplan-Meier analysis also indicated that survival time was significantly shortened in the high risk group versus the low risk group. Time-dependent receiver operating characteristic analysis demonstrated good predictive performance for the seven-mRNA signature. The mRNA signature also acts as an independent factor according to a Multivariate analysis. Our results are consistent with the seven-mRNA formula risk score. CONCLUSION: Our research showed a novel seven-mRNA biomarker based on MVI predicting RFS and OS in HCC patients. This mRNA signature can stratify patients into subgroups based on their risk of recurrence to help guide individualized treatment and precision management in HCC

    Online Camera-to-ground Calibration for Autonomous Driving

    Full text link
    Online camera-to-ground calibration is to generate a non-rigid body transformation between the camera and the road surface in a real-time manner. Existing solutions utilize static calibration, suffering from environmental variations such as tire pressure changes, vehicle loading volume variations, and road surface diversity. Other online solutions exploit the usage of road elements or photometric consistency between overlapping views across images, which require continuous detection of specific targets on the road or assistance with multiple cameras to facilitate calibration. In our work, we propose an online monocular camera-to-ground calibration solution that does not utilize any specific targets while driving. We perform a coarse-to-fine approach for ground feature extraction through wheel odometry and estimate the camera-to-ground calibration parameters through a sliding-window-based factor graph optimization. Considering the non-rigid transformation of camera-to-ground while driving, we provide metrics to quantify calibration performance and stopping criteria to report/broadcast our satisfying calibration results. Extensive experiments using real-world data demonstrate that our algorithm is effective and outperforms state-of-the-art techniques

    Survey on Dim Small Target Detection in Clutter Background: Wavelet, Inter-Frame and Filter Based Algorithms

    Get PDF
    AbstractDim small target is an active and important research area in image processing and pattern recognition. Various algorithms have been proposed to detect and track dim small target. This paper reviews some algorithms for dim small target detection, including the wavelet based algorithms, inter-frame difference based algorithms and filter based algorithms. Also, the further development of the technologies has been briefly analyzed

    Ginsenoside Rh1 Improves the Effect of Dexamethasone on Autoantibodies Production and Lymphoproliferation in MRL/lpr Mice

    Get PDF
    Ginsenoside Rh1 is able to upregulate glucocorticoid receptor (GR) level, suggesting Rh1 may improve glucocorticoid efficacy in hormone-dependent diseases. Therefore, we investigated whether Rh1 could enhance the effect of dexamethasone (Dex) in the treatment of MRL/lpr mice. MRL/lpr mice were treated with vehicle, Dex, Rh1, or Dex + Rh1 for 4 weeks. Dex significantly reduced the proteinuria and anti-dsDNA and anti-ANA autoantibodies. The levels of proteinuria and anti-dsDNA and anti-ANA autoantibodies were further decreased in Dex + Rh1 group. Dex, Rh1, or Dex + Rh1 did not alter the proportion of CD4+ splenic lymphocytes, whereas the proportion of CD8+ splenic lymphocytes was significantly increased in Dex and Dex + Rh1 groups. Dex + Rh1 significantly decreased the ratio of CD4+/CD8+ splenic lymphocytes compared with control. Con A-induced CD4+ splenic lymphocytes proliferation was increased in Dex-treated mice and was inhibited in Dex + Rh1-treated mice. Th1 cytokine IFN-γ mRNA was suppressed and Th2 cytokine IL-4 mRNA was increased by Dex. The effect of Dex on IFN-γ and IL-4 mRNA was enhanced by Rh1. In conclusion, our data suggest that Rh1 may enhance the effect of Dex in the treatment of MRL/lpr mice through regulating CD4+ T cells activation and Th1/Th2 balance

    Detection of QTLs for seedling characteristics in barley (Hordeum vulgare L.) grown under hydroponic culture condition

    Get PDF
    Published VersionBackground: Seedling characteristics play significant roles in the growth and development of barley (Hordeum vulgare L.), including stable stand establishment, water and nutrients uptake, biotic resistance and abiotic stresses, and can influence yield and quality. However, the genetic mechanisms underlying seedling characteristics in barley are largely unknown and little research has been done. In the present work, 21 seedling-related characteristics are assessed in a barley double haploid (DH) population, grown under hydroponic conditions. Of them, leaf age (LAG), shoot height (SH), maximum root length (MRL), main root number (MRN) and seedling fresh weight (SFW) were investigated at the 13th, 20th, 27th, and 34th day after germination. The objectives were to identify quantitative trait loci (QTLs) underlying these seedling characteristics using a high-density linkage map and to reveal the QTL expression pattern by comparing the QTLs among four different seedling growth stages.Results: A total of 70 QTLs were distributed over all chromosomes except 4H, and, individually, accounted for 5.01%–77. 78% of phenotypic variation. Out of the 70 detected QTLs, 23 showed a major effect on 14 seedling-related characteristics. Ten co-localized chromosomal regions on 2H (five regions), 3H (two regions) and 7H (three regions) involved 39 QTLs (55.71%), each simultaneously influenced more than one trait. Meanwhile, 9 co-localized genomic regions involving 22 QTLs for five seedling characteristics (LAG, SH, MRL, MRN and SFW) at the 13th, 20th, 27th and 34th day-old seedling were common for two or more growth stages of seedling. QTL in the vicinity of Vrs1 locus on chromosome 2H with the favorable alleles from Huadamai 6 was found to have the largest main effects on multiple seedling-related traits.Conclusions: Six QTL cluster regions associated with 16 seedling-related characteristics were observed on chromosome 2H, 3H and 7H. The majority of the 29 regions identified for five seedling characteristics were selectively expressed at different developmental stages. The genetic effects of 9 consecutive expression regions displayed different developmental influences at different developmental stages. These findings enhanced our understanding of a genetic basis underlying seedling characteristics in barley. Some QTLs detected here could be used for marker-assisted selection (MAS) in barley breedin
    corecore