4 research outputs found
Biosensor-assisted CRISPRi high-throughput screening to identify genetic targets in Zymomonas mobilis for high d-lactate production
Lactate is an important monomer for the synthesis of poly-lactate (PLA), which is a substitute for the petrochemical plastics. To achieve the goal of high lactate titer, rate, and yield for commercial production, efficient lactate production pathway is needed as well as genetic targets that affect high lactate production and tolerance. In this study, an LldR-based d-lactate biosensor with a broad dynamic range was first applied into Zymomonas mobilis to select mutant strains with strong GFP fluorescence, which could be the mutant strains with increased d-lactate production. Then, LldR-based d-lactate biosensor was combined with a genome-wide CRISPR interference (CRISPRi) library targeting the entire genome to generate thousands of mutants with gRNA targeting different genetic targets across the whole genome. Specifically, two mutant libraries were selected containing 105 and 104 mutants with different interference sites from two rounds of fluorescence-activated cell sorting (FACS), respectively. Two genetic targets of ZMO1323 and ZMO1530 were characterized and confirmed to be associated with the increased d-lactate production, further knockout of ZMO1323 and ZMO1530 resulted in a 15% and 21% increase of d-lactate production, respectively. This work thus not only established a high-throughput approach that combines genome-scale CRISPRi and biosensor-assisted screening to identify genetic targets associated with d-lactate production in Z. mobilis, but also provided a feasible high-throughput screening approach for rapid identification of genetic targets associated with strain performance for other industrial microorganisms
Identification and Characterization of Genes Related to Ampicillin Antibiotic Resistance in Zymomonas mobilis
Antibiotics can inhibit or kill microorganisms, while microorganisms have evolved antibiotic resistance strategies to survive antibiotics. Zymomonas mobilis is an ideal industrial microbial chassis and can tolerate multiple antibiotics. However, the mechanisms of antibiotic resistance and genes associated with antibiotic resistance have not been fully analyzed and characterized. In this study, we investigated genes associated with antibiotic resistance using bioinformatic approaches and examined genes associated with ampicillin resistance using CRISPR/Cas12a−based genome−editing technology. Six ampicillin−resistant genes (ZMO0103, ZMO0893, ZMO1094, ZMO1650, ZMO1866, and ZMO1967) were identified, and five mutant strains ZM4∆0103, ZM4∆0893, ZM4∆1094, ZM4∆1650, and ZM4∆1866 were constructed. Additionally, a four−gene mutant ZM4∆ARs was constructed by knocking out ZMO0103, ZMO0893, ZMO1094, and ZMO1650 continuously. Cell growth, morphology, and transformation efficiency of mutant strains were examined. Our results show that the cell growth of ZM4∆0103 and ZM4∆ARs was significantly inhibited with 150 μg/mL ampicillin, and cells changed to a long filament shape from a short rod shape. Moreover, the transformation efficiencies of ZM4∆0103 and ZM4∆ARs were decreased. Our results indicate that ZMO0103 is the key to ampicillin resistance in Z. mobilis, and other ampicillin−resistant genes may have a synergetic effect with it. In summary, this study identified and characterized genes related to ampicillin resistance in Z. mobilis and laid a foundation for further study of other antibiotic resistance mechanisms
Progress and perspective on lignocellulosic hydrolysate inhibitor tolerance improvement in Zymomonas mobilis
Abstract Pretreatment is the key step to overcome the recalcitrance of lignocellulosic biomass making sugars available for subsequent enzymatic hydrolysis and microbial fermentation. During the process of pretreatment and enzymatic hydrolysis as well as fermentation, various toxic compounds may be generated with strong inhibition on cell growth and the metabolic capacity of fermenting strains. Zymomonas mobilis is a natural ethanologenic bacterium with many desirable industrial characteristics, but it can also be severely affected by lignocellulosic hydrolysate inhibitors. In this review, analytical methods to identify and quantify potential inhibitory compounds generated during lignocellulose pretreatment and enzymatic hydrolysis were discussed. The effect of hydrolysate inhibitors on Z. mobilis was also summarized as well as corresponding approaches especially the high-throughput ones for the evaluation. Then the strategies to enhance inhibitor tolerance of Z. mobilis were presented, which include both forward and reverse genetics approaches such as classical and novel mutagenesis approaches, adaptive laboratory evolution, as well as genetic and metabolic engineering. Moreover, this review provided perspectives and guidelines for future developments of robust strains for efficient bioethanol or biochemical production from lignocellulosic materials