19,219 research outputs found

    Intervalley coupling by quantum dot confinement potentials in monolayer transition metal dichalcogenides

    Get PDF
    Monolayer transition metal dichalcogenides (TMDs) offer new opportunities for realizing quantum dots (QDs) in the ultimate two-dimensional (2D) limit. Given the rich control possibilities of electron valley pseudospin discovered in the monolayers, this quantum degree of freedom can be a promising carrier of information for potential quantum spintronics exploiting single electrons in TMD QDs. An outstanding issue is to identify the degree of valley hybridization, due to the QD confinement, which may significantly change the valley physics in QDs from its form in the 2D bulk. Here we perform a systematic study of the intervalley coupling by QD confinement potentials on extended TMD monolayers. We find that the intervalley coupling in such geometry is generically weak due to the vanishing amplitude of the electron wavefunction at the QD boundary, and hence valley hybridization shall be well quenched by the much stronger spin-valley coupling in monolayer TMDs and the QDs can well inherit the valley physics of the 2D bulk. We also discover sensitive dependence of intervalley coupling strength on the central position and the lateral length scales of the confinement potentials, which may possibly allow tuning of intervalley coupling by external controlsComment: 17 pages, 14 figure

    Brightened spin-triplet interlayer excitons and optical selection rules in van der Waals heterobilayers

    Full text link
    We investigate the optical properties of spin-triplet interlayer excitons in heterobilayer transition metal dichalcogenides in comparison with the spin-singlet ones. Surprisingly, the optical transition dipole of the spin-triplet exciton is found to be in the same order of magnitude to that of the spin-singlet exciton, in sharp contrast to the monolayer excitons where the spin triplet species is considered as dark compared to the singlet. Unlike the monolayer excitons whose spin-conserved (spin-flip) transition dipole can only couple to light of in-plane (out-of-plane) polarization, such restriction is removed for the interlayer excitons due to the breaking of the out-of-plane mirror symmetry. We find that as the interlayer atomic registry changes, the optical transition dipole of interlayer exciton crosses between in-plane ones of opposite circular polarization and the out-of-plane one for both the spin-triplet and spin-singlet species. As a result, excitons of both species have non-negligible coupling into photon modes of both in-plane and out-of-plane propagations, another sharp difference from the monolayers where the exciton couples predominantly into the out-of-plane propagation channel. At given atomic registry, the spin-triplet and spin-singlet excitons have distinct valley polarization selection rules, allowing the selective optical addressing of both the valley configuration and the spin singlet/triplet configuration of interlayer excitons

    Principal component analysis for second-order stationary vector time series

    Get PDF
    We extend the principal component analysis (PCA) to second-order stationary vector time series in the sense that we seek for a contemporaneous linear transformation for a pp-variate time series such that the transformed series is segmented into several lower-dimensional subseries, and those subseries are uncorrelated with each other both contemporaneously and serially. Therefore those lower-dimensional series can be analysed separately as far as the linear dynamic structure is concerned. Technically it boils down to an eigenanalysis for a positive definite matrix. When pp is large, an additional step is required to perform a permutation in terms of either maximum cross-correlations or FDR based on multiple tests. The asymptotic theory is established for both fixed pp and diverging pp when the sample size nn tends to infinity. Numerical experiments with both simulated and real data sets indicate that the proposed method is an effective initial step in analysing multiple time series data, which leads to substantial dimension reduction in modelling and forecasting high-dimensional linear dynamical structures. Unlike PCA for independent data, there is no guarantee that the required linear transformation exists. When it does not, the proposed method provides an approximate segmentation which leads to the advantages in, for example, forecasting for future values. The method can also be adapted to segment multiple volatility processes.Comment: The original title dated back to October 2014 is "Segmenting Multiple Time Series by Contemporaneous Linear Transformation: PCA for Time Series
    corecore