2 research outputs found

    Influence of the Viscosity of Nanofluids on Surface Roughness in End Milling of Nickel Alloys with Minimum Quantity Lubrication

    Get PDF
    Minimum Quantity Lubrication (MQL) using vegetable oils is considered a sustainable lubrication method, particularly for machining difficult-to-machine materials like nickel and titanium alloys. Although a significant influence of nanofluid viscosity on lubrication has been observed in MQL machining, as evidenced by limited literature, the influence of viscosity on MQL machining of difficult-to-machine materials like nickel alloys is yet to be established. This research aimed to study the influence of viscosity on the MQL end milling machining performance of Inconel 718 alloy. Three representative nanofluids were prepared using metallic (Cu), ceramic (Al2O3), and non-metallic (CNT) nanoparticles and palm oil. It was found that the CNT had a significant influence on viscosity at the same concentration, resulting in the highest viscosity of 433.2cP at 30oC. When the machining performance was investigated under different lubricating conditions (dry machining, flood cooling, and MQL), the viscosity of the nanofluids was observed to have a substantial influence on the machining performance. The CNT nanofluid with the highest viscosity penetrated the machining zone producing the lowest surface roughness with improved lubrication by 65.4% and 30.18% when compared with dry machining and flood cooling, respectively. The surface topography study confirmed the superior lubrication performance of CNT nanofluid. Overall, MQL milling with 0.5wt% nanoparticle concentration demonstrated effective machining performance when compared with dry machining and flood cooling

    Influence of the Viscosity of Nanofluids on Surface Roughness in End Milling of Nickel Alloys with Minimum Quantity Lubrication

    No full text
    Minimum Quantity Lubrication (MQL) using vegetable oils is considered a sustainable lubrication method, particularly for machining difficult-to-machine materials like nickel and titanium alloys. Although a significant influence of nanofluid viscosity on lubrication has been observed in MQL machining, as evidenced by limited literature, the influence of viscosity on MQL machining of difficult-to-machine materials like nickel alloys is yet to be established. This research aimed to study the influence of viscosity on the MQL end milling machining performance of Inconel 718 alloy. Three representative nanofluids were prepared using metallic (Cu), ceramic (Al2O3), and non-metallic (CNT) nanoparticles and palm oil. It was found that the CNT had a significant influence on viscosity at the same concentration, resulting in the highest viscosity of 433.2cP at 30oC. When the machining performance was investigated under different lubricating conditions (dry machining, flood cooling, and MQL), the viscosity of the nanofluids was observed to have a substantial influence on the machining performance. The CNT nanofluid with the highest viscosity penetrated the machining zone producing the lowest surface roughness with improved lubrication by 65.4% and 30.18% when compared with dry machining and flood cooling, respectively. The surface topography study confirmed the superior lubrication performance of CNT nanofluid. Overall, MQL milling with 0.5wt% nanoparticle concentration demonstrated effective machining performance when compared with dry machining and flood cooling
    corecore