12,620 research outputs found

    Remarks on the Theory of Cosmological Perturbation

    Full text link
    It is shown that the power spectrum defined in the Synchronous Gauge can not be directly used to calculate the predictions of cosmological models on the large-scale structure of universe, which should be calculated directly by a suitable gauge-invariant power spectrum or the power spectrum defined in the Newtonian Gauge.Comment: 13 pages, 1 figure, minor changes, to be published in Chinese Physics Letter

    QCD corrections to polarization of J/\psi and \Upsilon at Fermilab Tevatron and CERN LHC

    Full text link
    In this work, we present more detail of the calculation on the NLO QCD corrections to polarization of direct J/psi production via color singlet at Tevatron and LHC, as well as the results for Upsilon for the first time. Our results show that the J/psi polarization status drastically changes from transverse polarization dominant at LO into longitudinal polarization dominant in the whole range of the transverse momentum ptp_t of J/psi when the NLO corrections are counted. For Upsilon production, the p_t distribution of the polarization status behaves almost the same as that for J/psi except that the NLO result is transverse polarization at small p_t range. Although the theoretical evaluation predicts a larger longitudinal polarization than the measured value at Tevatron, it may provide a solution towards the previous large discrepancy for J/psi and Upsilon polarization between theoretical predication and experimental measurement, and suggests that the next important step is to calculate the NLO corrections to hadronproduction of color octet state J/psi^(8) and Upsilon^(8). Our calculations are performed in two ways, namely we do and do not analytically sum over the polarizations, and then check them with each other.Comment: 12 pages, 12 figures, two columns, use revtex4; to appear in PR

    Thermal Bremsstrahlung Radiation in a Two-Temperature Plasma

    Full text link
    In the normal one-temperature plasma the motion of ions is usually neglected when calculating the Bremsstrahlung radiation of the plasma. Here we calculate the Bremsstrahlung radiation of a two-temperature plasma by taking into account of the motion of ions. Our results show that the total radiation power is always lower if the motion of ions is considered. We also apply the two-temperature Bremsstrahlung radiation mechanism for an analytical Advection-Dominated Accretion Flow (ADAF) model; we find the two-temperature correction to the total Bremsstrahlung radiation for ADAF is negligible.Comment: 5 pages, 4 figures, accepted for publication in CHJAA. Some discussions and references adde

    Characterization of submillimetre quasi-optical twin-slot double-junction SIS mixers

    Get PDF
    We report on the continuing development of submillimetre quasi-optical slot antenna SIS mixers, which use two-junction tuning circuits. Direct and heterodyne Fourier transform spectrometer measurements have been performed to compare device performance with predictions. Demonstrated double-sideband receiver noise temperatures of better than 540 K at 808 GHz make these SIS mixers substantially better than GaAs Schottky receivers for the astronomically important CI and CO transitions near 810 GHz

    Quasi-optical SIS mixers with normal metal tuning structures

    Get PDF
    We recently reported (1996) a quasi-optical SIS mixer which used Nb/Al-oxide/Nb tunnel junctions and a normal-metal (Al) tuning circuit to achieve an uncorrected receiver noise temperature of 840 K (DSB) at 1042 GHz. Here we present results on several different device designs, which together cover the 300-1200 GHz frequency range. The mixers utilize an antireflection-coated silicon hyper-hemispherical lens, a twin-slot antenna, and a two-junction tuning circuit. The broad-band frequency response was measured using Fourier transform spectrometry (FTS), and is in good agreement with model calculations. Heterodyne tests were carried out from 400 GHz up to 1040 GHz, and these measurements agree well with the FTS results and with calculations based on Tucker's theory (1985)

    Low-noise 1 THz niobium superconducting tunnel junction mixer with a normal metal tuning circuit

    Get PDF
    We describe a 1 THz quasioptical SIS mixer which uses a twin-slot antenna, an antireflection-coated silicon hyperhemispherical lens, Nb/Al-oxide/Nb tunnel junctions, and an aluminum normal-metal tuning circuit in a two-junction configuration. Since the mixer operates substantially above the gap frequency of niobium (nu >~ 2 Delta/h ~ 700 GHz), a normal metal is used in the tuning circuit in place of niobium to reduce the Ohmic loss. The frequency response of the device was measured using a Fourier transform spectrometer and agrees reasonably well with the theoretical prediction. At 1042 GHz, the uncorrected double-sideband receiver noise temperature is 840 K when the physical temperature of the mixer is 2.5 K. This is the first SIS mixer which outperforms GaAs Schottky diode mixers by a large margin at 1 THz

    The Holographic dark energy reexamined

    Full text link
    We have reexamined the holographic dark energy model by considering the spatial curvature. We have refined the model parameter and observed that the holographic dark energy model does not behave as phantom model. Comparing the holographic dark energy model to the supernova observation alone, we found that the closed universe is favored. Combining with the Wilkinson Microwave Anisotropy Probe (WMAP) data, we obtained the reasonable value of the spatial curvature of our universe.Comment: divided into sections, add one figure, some typos corrected, references added, Accepted for publication in PRD; v3: some typos corrected, title change
    • …
    corecore