11 research outputs found
Hyper-Morphology: Experimentations with bio-inspired design processes for adaptive spatial re-use
Hyper-Morphology is an on-going research outlining a bottom-up evolutionary design process based on autonomous cellular building components. The research interfaces critical operational traits of the natural world (Evolutionary Development Biology, Embryology and Cellular Differentiation) with Evolutionary Computational techniques driven design methodologies. In the Hyper-Morphology research, genetic sequences are considered as sets of locally coded relational associations between multiple factors such as the amount of components, material based constraints, and geometric adaptation/degrees of freedom based adaptation abilities etc, which are embedded autonomously within each HyperCell component. Collective intelligence driven decision-making processes are intrinsic to the Hyper-Morphology logic for intelligently operating with autonomous componential systems (akin to swarm systems). This subsequently results in user and activity centric global morphology generation in real-time. Practically, the Hyper-Morphology research focuses on a 24/7 economy loop wherein real-time adaptive spatial usage interfaces with contemporary culture of flexible living within spatial constraints in a rapidly urbanizing world.Architectural Engineering +TechnologyArchitecture and The Built Environmen
Performance Driven Design and Design Information Exchange
This paper presents a performance driven computational design methodology through introducing a case on parametric structural design. The paper describes the process of design technology development and frames a design methodology through which engineering, -in this case structural- aspects of architectural design could become more understandable, traceable and implementable by designers for dynamic and valid performance measurements and estimations. The research further embeds and customizes the process of topology optimization for specific design problems, in this case applied to the design of truss structures, for testing how the discretized results of Finite Elements Analysis in topology optimization can become the inputs for designing optimal trussed beams or cantilevers alternatives. The procedures of design information exchange between generative, simulative and evaluative modules for approaching the abovementioned engineering and design deliverables are developed and discussed in this paper