23 research outputs found

    A meta-analysis of mesophyll conductance to CO2in relation to major abiotic stresses in poplar species

    No full text
    Mesophyll conductance (gm) determines the diffusion of CO2 from the substomatal cavities to the site of carboxylation in the chloroplasts and represents a critical component of the diffusive limitation of photosynthesis. In this study, we evaluated the average effect sizes of different environmental constraints on gm in Populus spp., a forest tree model. We collected raw data of 815 A-Ci response curves from 26 datasets to estimate gm, using a single curve-fitting method to alleviate method-related bias. We performed a meta-analysis to assess the effects of different abiotic stresses on gm. We found a significant increase in gm from the bottom to the top of the canopy that was concomitant with the increase of maximum rate of carboxylation and light-saturated photosynthetic rate (Amax). gm was positively associated with increases in soil moisture and nutrient availability, but was insensitive to increasing soil copper concentration and did not vary with atmospheric CO2 concentration. Our results showed that gm was strongly related to Amax and to a lesser extent to stomatal conductance (gs). Moreover, a negative exponential relationship was obtained between gm and specific leaf area, which may be used to scale-up gm within the canopy

    Early performance of planted hybrid larch: effects of mechanical site preparation and planting depth

    Get PDF
    Some site preparation is generally recommended to enhance the growth and survival of planted and naturally regenerated seedlings, but it must be justified both economically and environmentally. More severe preparation is thought to be necessary for intensive plantation silviculture, e.g., using fast-growing, ameliorated stocks, especially in boreal ecosystems. Although not justified scientifically, deep-planting of seedlings is often discouraged and may even be financially penalized in eastern Canada. We thus evaluated early seedling growth and survival of hybrid larch (Larix 9 marschlinsii Coaz) in an experiment including mechanical site preparation and planting depth treatments. Our results suggest that satisfactory early hybrid larch establishment and growth could be met using low environmental impact or low cost treatments (such as soil inversion using an excavator or single-pass disk trenching), and that deeper planting has no negative effect. Structural equation modelling (SEM) was used to explore causal relationships between factors influencing seedling performance at the local scale (planting microsites), including soil moisture, soil temperature, surrounding vegetation, and seedling nutrition. SEM analysis supported the absence of overall differences among treatments, while also highlighting the negative impact of increased soil water content where drainage was suboptimal, as well as the unexpected positive impact of increased competition on growth mostly through seedling nutrition, among others. These early observations will need to be confirmed over a longer period, as well as with a more comprehensive assessment of site environmental conditions and competition intensity

    How do trees respond to species mixing in experimental compared to observational studies?

    Get PDF
    For decades, ecologists have investigated the effects of tree species diversity on tree productivity at different scales and with different approaches ranging from observational to experimental study designs. Using data from five European national forest inventories (16,773 plots), six tree species diversity experiments (584 plots), and six networks of comparative plots (169 plots), we tested whether tree species growth responses to species mixing are consistent and therefore transferrable between those different research approaches. Our results confirm the general positive effect of tree species mixing on species growth (16% on average) but we found no consistency in species-specific responses to mixing between any of the three approaches, even after restricting comparisons to only those plots that shared similar mixtures compositions and forest types. These findings highlight the necessity to consider results from different research approaches when selecting species mixtures that should maximize positive forest biodiversity and functioning relationships

    Quantifying CD95/cl-CD95L Implications in Cell Mechanics and Membrane Tension by Atomic Force Microscopy Based Force Measurements

    No full text
    International audienceAtomic Force Microscopy (AFM) is an invaluable tool to investigate the structure of biological material surfaces by imaging them at nanometer scale in physiological conditions. It can also be used to measure the forces and mechanics from single molecule interaction to cell / cell adhesion. Here, we present a methodology that allows to quantify cell elastic properties (using the Young modulus) and cell membrane tension modulated by CD95/cl-CD95L interactions by coupling nanoindentation and membrane tube pulling using suitably decorated AFM levers
    corecore