148 research outputs found
Microbial Growth and Organic Matter Cycling in the Pacific Ocean Along a Latitudinal Transect Between Subarctic and Subantarctic Waters
The Pacific Ocean constitutes about half of the global oceans and thus microbial processes in this ocean have a large impact on global elemental cycles. Despite several intensely studied regions large areas are still greatly understudied regarding microbial activities, organic matter cycling and biogeography. Refined information about these features is most important to better understand the significance of this ocean for global biogeochemical and elemental cycles. Therefore we investigated a suite of microbial and geochemical variables along a transect from the subantarctic to the subarctic Pacific in the upper 200 m of the water column. The aim was to quantify rates of organic matter processing, identify potential controlling factors and prokaryotic key players. The assessed variables included abundance of heterotrophic prokaryotes and cyanobacteria, heterotrophic prokaryotic production (HPP), turnover rate constants of amino acids, glucose, and acetate, leucine aminopeptidase and β-glucosidase activities, and the composition of the bacterial community by fluorescence in situ hybridization (FISH). The additional quantification of nitrate, dissolved amino acids and carbohydrates, chlorophyll a, particulate organic carbon and nitrogen (POC, PON) provided a rich environmental context. The oligotrophic gyres exhibited the lowest prokaryotic abundances, rates of HPP and substrate turnover. Low nucleic acid prokaryotes dominated in these gyres, whereas in temperate and subpolar regions further north and south, high nucleic acid prokaryotes dominated. Turnover rate constants of glucose and acetate, as well as leucine aminopeptidase activity, increased from (sub)tropical toward the subpolar regions. In contrast, HPP and bulk growth rates were highest near the equatorial upwelling and lowest in the central gyres and subpolar regions. The SAR11 clade, the Roseobacter group and Flavobacteria constituted the majority of the prokaryotic communities. Vertical profiles of the biogeochemical and microbial variables markedly differed among the different regions and showed close covariations of the microbial variables and chlorophyll a, POC and PON. The results show that hydrographic, microbial, and biogeochemical properties exhibited distinct patterns reflecting the biogeographic provinces along the transect. The microbial variables assessed contribute to a better and refined understanding of the scales of microbial organic matter processing in large areas of the epipelagic Pacific beyond its well-studied regions
Identification of dimethylamine monooxygenase in marine bacteria reveals a metabolic bottleneck in the methylated amine degradation pathway
Methylated amines (MAs) are ubiquitous in the marine environment and their subsequent flux into the atmosphere can result in the formation of aerosols and ultimately cloud condensation nuclei. Therefore, these compounds have a potentially important role in climate regulation. Using Ruegeria pomeroyi as a model, we identified the genes encoding dimethylamine (DMA) monooxygenase (dmmABC) and demonstrate that this enzyme degrades DMA to monomethylamine (MMA). Although only dmmABC are required for enzyme activity in recombinant Escherichia coli, we found that an additional gene, dmmD, was required for the growth of R. pomeroyi on MAs. The dmmDABC genes are absent from the genomes of multiple marine bacteria, including all representatives of the cosmopolitan SAR11 clade. Consequently, the abundance of dmmDABC in marine metagenomes was substantially lower than the genes required for other metabolic steps of the MA degradation pathway. Thus, there is a genetic and potential metabolic bottleneck in the marine MA degradation pathway. Our data provide an explanation for the observation that DMA-derived secondary organic aerosols (SOAs) are among the most abundant SOAs detected in fine marine particles over the North and Tropical Atlantic Ocean
Polyclonal mucosa-associated invariant T cells have unique innate functions in bacterial infection
Mucosa-associated invariant T (MAIT) cells are a unique population of αβ T cells in mammals that reside preferentially in mucosal tissues and express an invariant Vα paired with limited Vβ T-cell receptor (TCR) chains. Furthermore, MAIT cell development is dependent upon the expression of the evolutionarily conserved major histocompatibility complex (MHC) class Ib molecule MR1. Using in vitro assays, recent studies have shown that mouse and human MAIT cells are activated by antigen-presenting cells (APCs) infected with diverse microbes, including numerous bacterial strains and yeasts, but not viral pathogens. However, whether MAIT cells play an important, and perhaps unique, role in controlling microbial infection has remained unclear. To probe MAIT cell function, we show here that purified polyclonal MAIT cells potently inhibit intracellular bacterial growth of Mycobacterium bovis BCG in macrophages (MΦ) in coculture assays, and this inhibitory activity was dependent upon MAIT cell selection by MR1, secretion of gamma interferon (IFN-γ), and an innate interleukin 12 (IL-12) signal from infected MΦ. Surprisingly, however, the cognate recognition of MR1 by MAIT cells on the infected MΦ was found to play only a minor role in MAIT cell effector function. We also report that MAIT cell-deficient mice had higher bacterial loads at early times after infection compared to wild-type (WT) mice, demonstrating that MAIT cells play a unique role among innate lymphocytes in protective immunity against bacterial infection
Chemokine gene expression in lung CD8 T cells correlates with protective immunity in mice immunized intra-nasally with Adenovirus-85A
<p>Abstract</p> <p>Background</p> <p>Immunization of BALB/c mice with a recombinant adenovirus expressing <it>Mycobacterium tuberculosis </it>(<it>M. tuberculosis</it>) antigen 85A (Ad85A) protects against aerosol challenge with <it>M. tuberculosis </it>only when it is administered intra-nasally (i.n.). Immunization with Ad85A induces a lung-resident population of activated CD8 T cells that is antigen dependent, highly activated and mediates protection by early inhibition of <it>M. tuberculosis </it>growth. In order to determine why the i.n. route is so effective compared to parenteral immunization, we used microarray analysis to compare gene expression profiles of pulmonary and splenic CD8 T cells after i.n. or intra-dermal (i.d.) immunization.</p> <p>Method</p> <p>Total RNA from CD8 T cells was isolated from lungs or spleens of mice immunized with Ad85A by the i.n. or i.d. route. The gene profiles generated from each condition were compared. Statistically significant (p ≤ 0.05) differentially expressed genes were analyzed to determine if they mapped to particular molecular functions, biological processes or pathways using Gene Ontology and Panther DB mapping tools.</p> <p>Results</p> <p>CD8 T cells from lungs of i.n. immunized mice expressed a large number of chemokines chemotactic for resting and activated T cells as well as activation and survival genes. Lung lymphocytes from i.n. immunized mice also express the chemokine receptor gene <it>Cxcr6</it>, which is thought to aid long-term retention of antigen-responding T cells in the lungs. Expression of CXCR6 on CD8 T cells was confirmed by flow cytometry.</p> <p>Conclusions</p> <p>Our microarray analysis represents the first <it>ex vivo </it>study comparing gene expression profiles of CD8 T cells isolated from distinct sites after immunization with an adenoviral vector by different routes. It confirms earlier phenotypic data indicating that lung i.n. cells are more activated than lung i.d. CD8 T cells. The sustained expression of chemokines and activation genes enables CD8 T cells to remain in the lungs for extended periods after i.n. immunization. This may account for the early inhibition of <it>M. tuberculosis </it>growth observed in Ad85A i.n. immunized mice and explain the effectiveness of i.n. compared to parenteral immunization with this viral vector.</p
A microRNA profile of human CD8(+) regulatory T cells and characterization of the effects of microRNAs on Treg cell-associated genes.
Recently, regulatory T (Treg) cells have gained interest in the fields of immunopathology, transplantation and oncoimmunology. Here, we investigated the microRNA expression profile of human natural CD8(+)CD25(+) Treg cells and the impact of microRNAs on molecules associated with immune regulation.
We purified human natural CD8(+) Treg cells and assessed the expression of FOXP3 and CTLA-4 by flow cytometry. We have also tested the ex vivo suppressive capacity of these cells in mixed leukocyte reactions. Using TaqMan low-density arrays and microRNA qPCR for validation, we could identify a microRNA 'signature' for CD8(+)CD25(+)FOXP3(+)CTLA-4(+) natural Treg cells. We used the 'TargetScan' and 'miRBase' bioinformatics programs to identify potential target sites for these microRNAs in the 3'-UTR of important Treg cell-associated genes.
The human CD8(+)CD25(+) natural Treg cell microRNA signature includes 10 differentially expressed microRNAs. We demonstrated an impact of this signature on Treg cell biology by showing specific regulation of FOXP3, CTLA-4 and GARP gene expression by microRNA using site-directed mutagenesis and a dual-luciferase reporter assay. Furthermore, we used microRNA transduction experiments to demonstrate that these microRNAs impacted their target genes in human primary Treg cells ex vivo.
We are examining the biological relevance of this 'signature' by studying its impact on other important Treg cell-associated genes. These efforts could result in a better understanding of the regulation of Treg cell function and might reveal new targets for immunotherapy in immune disorders and cancer
Organised crime and international aid subversion: evidence from Colombia and Afghanistan
Scholarly attempts to explain aid subversion in post-conflict contexts frame the challenge in terms of corrupt practices and transactions disconnected from local power struggles. Also, they assume a distinction between organised crime and the state. This comparative analysis of aid subversion in Colombia and Afghanistan reveals the limits of such an approach. Focusing on relations that anchor organised crime within local political, social and economic processes, we demonstrate that organised crime is dynamic, driven by multiple motives, and endogenous to local power politics. Better understanding of governance arrangements around the organised crime-conflict nexus which enable aid subversion is therefore required
Limited genetic variation and structure in softshell clams (Mya arenaria) across their native and introduced range
Author Posting. © Springer, 2009. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Conservation Genetics 10 (2009): 803-814, doi:10.1007/s10592-008-9641-y.To offset declines in commercial landings of the softshell clam, Mya arenaria, resource
managers are engaged in extensive stocking of seed clams throughout its range in the
northwest Atlantic. Because a mixture of native and introduced stocks can disrupt locally
adapted genotypes, we investigated genetic structure in M. arenaria populations across
its current distribution to test for patterns of regional differentiation. We sequenced
mitochondrial cytochrome oxidase I (COI) for a total of 212 individuals from 12 sites in
the northwest Atlantic (NW Atlantic), as well as two introduced sites, the northeast
Pacific (NE Pacific) and the North Sea and Europe (NS Europe). Populations exhibited
extremely low genetic variation, with one haplotype dominating (65-100%) at all sites
sampled. Despite being introduced in the last 150-400 years, both NE Pacific and NS
Europe populations had higher diversity measures than those in the NW Atlantic and both
contained private haplotypes at frequencies of 10% to 27% consistent with their
geographic isolation. While significant genetic structure (FST = 0.159, p<0.001) was
observed between NW Atlantic and NS Europe, there was no evidence for genetic
structure across the pronounced environmental clines of the NW Atlantic. Reduced
genetic diversity in mtDNA combined with previous studies reporting reduced genetic
diversity in nuclear markers strongly suggests a recent population expansion in the NW
Atlantic, a pattern that may result from the retreat of ice sheets during Pleistocene glacial
periods. Lack of genetic diversity and regional genetic differentiation suggests that
present management strategies for the commercially important softshell clam are unlikely
to have a significant impact on the regional distribution of genetic variation, although the
possibility of disrupting locally adapted stocks cannot be excluded.This work was supported by NSF grants OCE-0326734 and OCE-0215905 to L.
Mullineaux and OCE- 0349177 (Biological Oceanography) to PHB
Recommended from our members
Enabling autocracy? Peacebuilding and post-conflict authoritarianism in the Democratic Republic of Congo
Does peacebuilding shape the regime type of countries where international missions are deployed? Most peacebuilding missions take place in authoritarian contexts, and seek to overcome the legacies of conflict by overseeing transitions to democratic rule; however, most regimes that experience peacebuilding still retain some form of authoritarian rule. In this paper, we examine the extent to which international peacebuilding missions contribute to the consolidation of post-conflict authoritarian regimes even when their stated aims involve the promotion of democracy. We argue that international peacebuilders can act as enablers of authoritarianism in host countries. We distinguish this category of behavior from explicit ‘autocracy promotion,’ which implies intentional support to autocracy. Instead, enabling is often an unintended consequence, and we identify two mechanisms through which enabling occurs: by building the capacity of incumbent authoritarian leaders and by signaling a permissive environment for authoritarian behavior for national actors. We illustrate our argument with the case of the UN peacekeeping operation in the Democratic Republic of Congo
Impacts of chemical gradients on microbial community structure
Succession of redox processes is sometimes assumed to define a basic microbial community structure for ecosystems with oxygen gradients. In this paradigm, aerobic respiration, denitrification, fermentation and sulfate reduction proceed in a thermodynamically determined order, known as the ‘redox tower’. Here, we investigated whether redox sorting of microbial processes explains microbial community structure at low-oxygen concentrations. We subjected a diverse microbial community sampled from a coastal marine sediment to 100 days of tidal cycling in a laboratory chemostat. Oxygen gradients (both in space and time) led to the assembly of a microbial community dominated by populations that each performed aerobic and anaerobic metabolism in parallel. This was shown by metagenomics, transcriptomics, proteomics and stable isotope incubations. Effective oxygen consumption combined with the formation of microaggregates sustained the activity of oxygen-sensitive anaerobic enzymes, leading to braiding of unsorted redox processes, within and between populations. Analyses of available metagenomic data sets indicated that the same ecological strategies might also be successful in some natural ecosystems
FOXP3 Expression Is Upregulated in CD4+T Cells in Progressive HIV-1 Infection and Is a Marker of Disease Severity
Understanding the role of different classes of T cells during HIV infection is critical to determining which responses correlate with protective immunity. To date, it is unclear whether alterations in regulatory T cell (Treg) function are contributory to progression of HIV infection.FOXP3 expression was measured by both qRT-PCR and by flow cytometry in HIV-infected individuals and uninfected controls together with expression of CD25, GITR and CTLA-4. Cultured peripheral blood mononuclear cells were stimulated with anti-CD3 and cell proliferation was assessed by CFSE dilution.HIV infected individuals had significantly higher frequencies of CD4(+)FOXP3(+) T cells (median of 8.11%; range 1.33%-26.27%) than healthy controls (median 3.72%; range 1.3-7.5%; P = 0.002), despite having lower absolute counts of CD4(+)FOXP3(+) T cells. There was a significant positive correlation between the frequency of CD4(+)FOXP3(+) T cells and viral load (rho = 0.593 P = 0.003) and a significant negative correlation with CD4 count (rho = -0.423 P = 0.044). 48% of our patients had CD4 counts below 200 cells/microl and these patients showed a marked elevation of FOXP3 percentage (median 10% range 4.07%-26.27%). Assessing the mechanism of increased FOXP3 frequency, we found that the high FOXP3 levels noted in HIV infected individuals dropped rapidly in unstimulated culture conditions but could be restimulated by T cell receptor stimulation. This suggests that the high FOXP3 expression in HIV infected patients is likely due to FOXP3 upregulation by individual CD4(+) T cells following antigenic or other stimulation.FOXP3 expression in the CD4(+) T cell population is a marker of severity of HIV infection and a potential prognostic marker of disease progression
- …