1,804 research outputs found

    Multi-site Event Discrimination in Large Liquid Scintillation Detectors

    Full text link
    Simulation studies have been carried out to explore the ability to discriminate between single-site and multi-site energy depositions in large scale liquid scintillation detectors. A robust approach has been found that is predicted to lead to a significant statistical separation for a large variety of event classes, providing a powerful tool to discriminate against backgrounds and break important degeneracies in signal extraction. This has particularly relevant implications for liquid scintillator searches for neutrinoless double beta decay (0νββ0\nu\beta\beta) from 130^{130}Te and 136^{136}Xe, where it is possible for a true 0νββ0\nu\beta\beta signal to be distinguished from most radioactive backgrounds (including those from cosmogenic production) as well as unknown gamma lines from the target isotope.Comment: 20 pages, 10 figure

    Another Look at Confidence Intervals: Proposal for a More Relevant and Transparent Approach

    Full text link
    The behaviors of various confidence/credible interval constructions are explored, particularly in the region of low statistics where methods diverge most. We highlight a number of challenges, such as the treatment of nuisance parameters, and common misconceptions associated with such constructions. An informal survey of the literature suggests that confidence intervals are not always defined in relevant ways and are too often misinterpreted and/or misapplied. This can lead to seemingly paradoxical behaviours and flawed comparisons regarding the relevance of experimental results. We therefore conclude that there is a need for a more pragmatic strategy which recognizes that, while it is critical to objectively convey the information content of the data, there is also a strong desire to derive bounds on models and a natural instinct to interpret things this way. Accordingly, we attempt to put aside philosophical biases in favor of a practical view to propose a more transparent and self-consistent approach that better addresses these issues.Comment: 23 pages, 11 figure

    Combined Constraints on Majorana Masses from Neutrinoless Double Beta Decay Experiments

    Full text link
    Combined bounds on the Majorana neutrino mass for light and heavy neutrino exchange mechanisms are derived from current neutrinoless double beta decay (0{\nu}\b{eta}\b{eta}) search results for a variety of nuclear matrix element (NME) models. The approach requires self-consistency of a given model to predict NMEs across different isotopes. The derived bounds are notably stronger than those from any single experiment and show less model-to-model variation, highlighting the advantages of using multiple isotopes in such searches. Projections indicate that the combination of near-term experiments should be able to probe well into the inverted mass hierarchy region. A method to visually represent 0{\nu}\b{eta}\b{eta} experimental results is also suggested to more transparently compare across different isotopes and explicitly track model dependencies.Comment: 5 pages, 5 figure

    Science capabilities of the VERITAS array of 10m imaging atmospheric Cherenkov gamma-ray detectors

    Get PDF
    Journal ArticleThe Very Energetic Radiation Imaging Telescope Array System (VERITAS) is an array of seven 10m aperture telescopes used for gamma-ray astronomy in the 50 GeV to 50 TeV (1 TeV= 101 2 electron Volt) energy range. The gamma rays are detected by measuring the optical Cherenkov light emitted by the cascade of electromagnetic particles that is generated by interactions of the high energy gamma-ray with the Earth's Atmosphere. This paper describes the science goals of the VERITAS array, a description of the array, and expected performance of the instrument

    Observers and Measurements in Noncommutative Spacetimes

    Full text link
    We propose a "Copenhagen interpretation" for spacetime noncommutativity. The goal is to be able to predict results of simple experiments involving signal propagation directly from commutation relations. A model predicting an energy dependence of the speed of photons of the order E/E_Planck is discussed in detail. Such effects can be detectable by the GLAST telescope, to be launched in 2006.Comment: 10 pp; v2: equivalence of observers explicitely stated; v3: minor changes, references and remarks added, burst spreading with energy emphasized as a signature rather than nois

    A Survey for Massive Giant Planets in Debris Disks with Evacuated Inner Cavities

    Get PDF
    The commonality of collisionally replenished debris around main sequence stars suggests that minor bodies are frequent around Sun-like stars. Whether or not debris disks in general are accompanied by planets is yet unknown, but debris disks with large inner cavities - perhaps dynamically cleared - are considered to be prime candidates for hosting large-separation massive giant planets. We present here a high-contrast VLT/NACO angular differential imaging survey for eight such cold debris disks. We investigated the presence of massive giant planets in the range of orbital radii where the inner edge of the dust debris is expected. Our observations are sensitive to planets and brown dwarfs with masses >3 to 7 Jupiter mass, depending on the age and distance of the target star. Our observations did not identify any planet candidates. We compare the derived planet mass upper limits to the minimum planet mass required to dynamically clear the inner disks. While we cannot exclude that single giant planets are responsible for clearing out the inner debris disks, our observations constrain the parameter space available for such planets. The non-detection of massive planets in these evacuated debris disks further reinforces the notion that the giant planet population is confined to the inner disk (<15 AU).Comment: Accepted for publication in Ap

    Probing the Planck Scale with Neutrino Oscillations

    Get PDF
    Quantum gravity "foam", among its various generic Lorentz non-invariant effects, would cause neutrino mixing. It is shown here that, if the foam is manifested as a nonrenormalizable effect at scale M, the oscillation length generically decreases with energy EE as (E/M)^(-2). Neutrino observatories and long-baseline experiments should have therefore already observed foam-induced oscillations, even if M is as high as the Planck energy scale. The null results, which can be further strengthened by better analysis of current data and future experiments, can be taken as experimental evidence that Lorentz invariance is fully preserved at the Planck scale, as is the case in critical string theory.Comment: 11 pages, 2 figures. Final version published in PRD. 1 figure, references, clarifications and explanations added. Results unchange

    The SISO CSPI PDG standard for commercial off-the-shelf simulation package interoperability reference models

    Get PDF
    For many years discrete-event simulation has been used to analyze production and logistics problems in manufactur-ing and defense. Commercial-off-the-shelf Simulation Packages (CSPs), visual interactive modelling environ-ments such as Arena, Anylogic, Flexsim, Simul8, Witness, etc., support the development, experimentation and visua-lization of simulation models. There have been various attempts to create distributed simulations with these CSPs and their tools, some with the High Level Architecture (HLA). These are complex and it is quite difficult to assess how a set of models/CSP are actually interoperating. As the first in a series of standards aimed at standardizing how the HLA is used to support CSP distributed simula-tions, the Simulation Interoperability Standards Organiza-tion’s (SISO) CSP Interoperability Product Development Group (CSPI PDG) has developed and standardized a set of Interoperability Reference Models (IRM) that are in-tended to clearly identify the interoperability capabilities of CSP distributed simulations
    • …
    corecore