55 research outputs found
Topological Properties of Citation and Metabolic Networks
Topological properties of "scale-free" networks are investigated by
determining their spectral dimensions , which reflect a diffusion process
in the corresponding graphs. Data bases for citation networks and metabolic
networks together with simulation results from the growing network model
\cite{barab} are probed. For completeness and comparisons lattice, random,
small-world models are also investigated. We find that is around 3 for
citation and metabolic networks, which is significantly different from the
growing network model, for which is approximately 7.5. This signals a
substantial difference in network topology despite the observed similarities in
vertex order distributions. In addition, the diffusion analysis indicates that
whereas the citation networks are tree-like in structure, the metabolic
networks contain many loops.Comment: 11 pages, 3 figure
Simulating Four-Dimensional Simplicial Gravity using Degenerate Triangulations
We extend a model of four-dimensional simplicial quantum gravity to include
degenerate triangulations in addition to combinatorial triangulations
traditionally used. Relaxing the constraint that every 4-simplex is uniquely
defined by a set of five distinct vertexes, we allow triangulations containing
multiply connected simplexes and distinct simplexes defined by the same set of
vertexes. We demonstrate numerically that including degenerated triangulations
substantially reduces the finite-size effects in the model. In particular, we
provide a strong numerical evidence for an exponential bound on the entropic
growth of the ensemble of degenerate triangulations, and show that a
discontinuous crumpling transition is already observed on triangulations of
volume N_4 ~= 4000.Comment: Latex, 8 pages, 4 eps-figure
cDNA array-CGH profiling identifies genomic alterations specific to stage and MYCN-amplification in neuroblastoma
BACKGROUND: Recurrent non-random genomic alterations are the hallmarks of cancer and the characterization of these imbalances is critical to our understanding of tumorigenesis and cancer progression. RESULTS: We performed array-comparative genomic hybridization (A-CGH) on cDNA microarrays containing 42,000 elements in neuroblastoma (NB). We found that only two chromosomes (2p and 12q) had gene amplifications and all were in the MYCN amplified samples. There were 6 independent non-contiguous amplicons (10.4–69.4 Mb) on chromosome 2, and the largest contiguous region was 1.7 Mb bounded by NAG and an EST (clone: 757451); the smallest region was 27 Kb including an EST (clone: 241343), NCYM, and MYCN. Using a probabilistic approach to identify single copy number changes, we systemically investigated the genomic alterations occurring in Stage 1 and Stage 4 NBs with and without MYCN amplification (stage 1-, 4-, and 4+). We have not found genomic alterations universally present in all (100%) three subgroups of NBs. However we identified both common and unique patterns of genomic imbalance in NB including gain of 7q32, 17q21, 17q23-24 and loss of 3p21 were common to all three categories. Finally we confirm that the most frequent specific changes in Stage 4+ tumors were the loss of 1p36 with gain of 2p24-25 and they had fewer genomic alterations compared to either stage 1 or 4-, indicating that for this subgroup of poor risk NB requires a smaller number of genomic changes are required to develop the malignant phenotype. CONCLUSIONS: cDNA A-CGH analysis is an efficient method for the detection and characterization of amplicons. Furthermore we were able to detect single copy number changes using our probabilistic approach and identified genomic alterations specific to stage and MYCN amplification
Genome-wide profiles of CtBP link metabolism with genome stability and epithelial reprogramming in breast cancer
epithelial reprogramming in breast cance
NUP98-PHF23 Is a Chromatin-Modifying Oncoprotein That Causes a Wide Array of Leukemias Sensitive to Inhibition of PHD Histone Reader Function
In this report, we show that expression of a NUP98-PHF23 (NP23) fusion, associated with acute myeloid leukemia (AML) in humans, leads to myeloid, erythroid, T-cell, and B-cell leukemia in mice. The leukemic and pre-leukemic tissues display a stem cell-like expression signature including Hoxa, Hoxb, and Meis1 genes. The PHF23 PHD domain is known to bind H3K4me3 residues, and chromatin immunoprecipitation experiments demonstrated that the NP23 protein bound chromatin at a specific subset of H3K4me3 sites, including Hoxa, Hoxb, and Meis1. Treatment of NP23 cells with disulfiram, which inhibits the binding of PHD domains to H3K4me3 residues, rapidly and selectively killed NP23 myeloblasts; cell death was preceded by decreased expression of Hoxa, Hoxb, and Meis1. Furthermore, AML driven by a related fusion gene, NUP98-JARID1A (NJL), was also sensitive to disulfiram. Thus, the NP23 mouse provides a platform to evaluate compounds that disrupt binding of oncogenic PHD proteins to H3K4me3
Interaction between the microbiome and TP53 in human lung cancer.
BACKGROUND: Lung cancer is the leading cancer diagnosis worldwide and the number one cause of cancer deaths. Exposure to cigarette smoke, the primary risk factor in lung cancer, reduces epithelial barrier integrity and increases susceptibility to infections. Herein, we hypothesize that somatic mutations together with cigarette smoke generate a dysbiotic microbiota that is associated with lung carcinogenesis. Using lung tissue from 33 controls and 143 cancer cases, we conduct 16S ribosomal RNA (rRNA) bacterial gene sequencing, with RNA-sequencing data from lung cancer cases in The Cancer Genome Atlas serving as the validation cohort.
RESULTS: Overall, we demonstrate a lower alpha diversity in normal lung as compared to non-tumor adjacent or tumor tissue. In squamous cell carcinoma specifically, a separate group of taxa are identified, in which Acidovorax is enriched in smokers. Acidovorax temporans is identified within tumor sections by fluorescent in situ hybridization and confirmed by two separate 16S rRNA strategies. Further, these taxa, including Acidovorax, exhibit higher abundance among the subset of squamous cell carcinoma cases with TP53 mutations, an association not seen in adenocarcinomas.
CONCLUSIONS: The results of this comprehensive study show both microbiome-gene and microbiome-exposure interactions in squamous cell carcinoma lung cancer tissue. Specifically, tumors harboring TP53 mutations, which can impair epithelial function, have a unique bacterial consortium that is higher in relative abundance in smoking-associated tumors of this type. Given the significant need for clinical diagnostic tools in lung cancer, this study may provide novel biomarkers for early detection
- …