59 research outputs found

    Recent results on energy relaxation in disordered charge and spin density waves

    Full text link
    We briefly review different approaches used recently to describe collective effects in the strong pinning model of disordered charge and spin density waves, in connection with the CRTBT very low temperature heat relaxation experiments.Comment: 4 pages, invited talk at ECRYS-200

    Slow relaxation experiments in disordered charge and spin density waves: collective dynamics of randomly distributed solitons

    Full text link
    We show that the dynamics of disordered charge density waves (CDWs) and spin density waves (SDWs) is a collective phenomenon. The very low temperature specific heat relaxation experiments are characterized by: (i) ``interrupted'' ageing (meaning that there is a maximal relaxation time); and (ii) a broad power-law spectrum of relaxation times which is the signature of a collective phenomenon. We propose a random energy model that can reproduce these two observations and from which it is possible to obtain an estimate of the glass cross-over temperature (typically Tg100200T_g \simeq 100 - 200 mK). The broad relaxation time spectrum can also be obtained from the solutions of two microscopic models involving randomly distributed solitons. The collective behavior is similar to domain growth dynamics in the presence of disorder and can be described by the dynamical renormalization group that was proposed recently for the one dimensional random field Ising model [D.S. Fisher, P. Le Doussal and C. Monthus, Phys. Rev. Lett. {\bf 80}, 3539 (1998)]. The typical relaxation time scales like τtypτ0exp(Tg/T)\tau^{\rm typ} \sim \tau_0 \exp{(T_g/T)}. The glass cross-over temperature TgT_g related to correlations among solitons is equal to the average energy barrier and scales like Tg2xξ0ΔT_g \sim 2 x \xi_0 \Delta. xx is the concentration of defects, ξ0\xi_0 the correlation length of the CDW or SDW and Δ\Delta the charge or spin gap.Comment: 20 pages, 16 figure

    Critical Hysteresis in Random Field XY and Heisenberg Models

    Full text link
    We study zero-temperature hysteresis in random-field XY and Heisenberg models in the zero-frequency limit of a cyclic driving field. We consider three distributions of the random field and present exact solutions in the mean field limit. The results show a strong effect of the form of disorder on critical hysteresis as well as the shape of hysteresis loops. A discrepancy with an earlier study based on the renormalization group is resolved.Comment: 10 pages, 6 figures; this is published version (added some text and references

    Dynamics of photoinduced Charge Density Wave-metal phase transition in K0.3MoO3

    Full text link
    We present first systematic studies of the photoinduced phase transition from the ground charge density wave (CDW) state to the normal metallic (M) state in the prototype quasi-1D CDW system K0.3MoO3. Ultrafast non-thermal CDW melting is achieved at the absorbed energy density that corresponds to the electronic energy difference between the metallic and CDW states. The results imply that on the sub-picosecond timescale when melting and subsequent initial recovery of the electronic order takes place the lattice remains unperturbed.Comment: Phys. Rev. Lett., accepted for publicatio

    Hysteresis in Random Field XY and Heisenberg Models: Mean Field Theory and Simulations at Zero Temperature

    Full text link
    We examine zero temperature hysteresis in random field XY and Heisenberg models in the zero frequency limit of a cyclic driving field. Exact expressions for hysteresis loops are obtained in the mean field approximation. These show rather unusual features. We also perform simulations of the two models on a simple cubic lattice and compare them with the predictions of the mean field theory.Comment: replaced by the published versio

    Disentanglement of the electronic and lattice parts of the order parameter in a 1D Charge Density Wave system probed by femtosecond spectroscopy

    Full text link
    We report on the high resolution studies of the temperature (T) dependence of the q=0 phonon spectrum in the quasi one-dimensional charge density wave (CDW) compound K0.3MoO3 utilizing time-resolved optical spectroscopy. Numerous modes that appear below Tc show pronounced T-dependences of their amplitudes, frequencies and dampings. Utilizing the time-dependent Ginzburg-Landau theory we show that these modes result from linear coupling of the electronic part of the order parameter to the 2kF phonons, while the (electronic) CDW amplitude mode is overdamped.Comment: 4 pages, 3 figures + supplementary material, accepted for publication in Phys. Rev. Let

    Coherent amplitudon generation in K_0.3MoO_3 through ultrafast inter-band quasi particle decay

    Get PDF
    The charge density wave system K_0.3MoO_3 has been studied using variable energy pump-probe spectroscopy, ellipsometry, and inelastic light scattering. The observed transient reflectivity response exhibits quite a complex behavior, containing contributions due to quasi particle excitations, coherent amplitudons and phonons, and heating effects. The generation of coherent amplitudons is discussed in terms of relaxation of photo-excited quasi particles, and is found to be resonant with the interband plasmon frequency. Two additional coherent excitations observed in the transients are assigned to zone-folding modes of the charge density wave state

    Energy relaxation in disordered charge and spin density waves

    Full text link
    We investigate collective effects in the strong pinning model of disordered charge and spin density waves (CDWs and SDWs) in connection with heat relaxation experiments. We discuss the classical and quantum limits that contribute to two distinct contribution to the specific heat (a CvT2C_v \sim T^{-2} contribution and a CvTαC_v \sim T^{\alpha} contribution respectively), with two different types of disorder (strong pinning versus substitutional impurities). From the calculation of the two level system energy splitting distribution in the classical limit we find no slow relaxation in the commensurate case and a broad spectrum of relaxation times in the incommensurate case. In the commensurate case quantum effects restore a non vanishing energy relaxation, and generate stronger disorder effects in incommensurate systems. For substitutional disorder we obtain Friedel oscillations of bound states close to the Fermi energy. With negligible interchain couplings this explains the power-law specific heat CvTαC_v \sim T^{\alpha} observed in experiments on CDWs and SDWs combined to the power-law susceptibility χ(T)T1+α\chi(T)\sim T^{-1+\alpha} observed in the CDW o-TaS3_3.Comment: 13 pages, 10 figures, improvements in the presentatio
    corecore