53 research outputs found
Evidence of 1D behaviour of He confined within carbon-nanotube bundles
We present the first low-temperature thermodynamic investigation of the
controlled physisorption of He gas in carbon single-wall nanotube (SWNT)
samples. The vibrational specific heat measured between 100 mK and 6 K
demonstrates an extreme sensitivity to outgassing conditions. For bundles with
a few number of NTs the extra contribution to the specific heat, C,
originating from adsorbed He at very low density displays 1D behavior,
typical for He atoms localized within linear channels as grooves and
interstitials, for the first time evidenced. For larger bundles, C
recovers the 2D behaviour akin to the case of He films on planar
substrates (grafoil).Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let
Fractional power-law susceptibility and specific heat in low temperature insulating state of o-TaS_{3}
Measurements of the magnetic susceptibility and its anisotropy in the
quasi-one-dimensional system o-TaS_{3} in its low-T charge density wave (CDW)
ground state are reported. Both sets of data reveal below 40 K an extra
paramagnetic contribution obeying a power-law temperature dependence
\chi(T)=AT^{-0.7}. The fact that the extra term measured previously in specific
heat in zero field, ascribed to low-energy CDW excitations, also follows a
power law C_{LEE}(0,T)=CT^{0.3}, strongly revives the case of random exchange
spin chains. Introduced impurities (0.5% Nb) only increase the amplitude C, but
do not change essentially the exponent. Within the two-level system (TLS)
model, we estimate from the amplitudes A and C that there is one TLS with a
spin s=1/2 localized on the chain at the lattice site per cca 900 Ta atoms. We
discuss the possibility that it is the charge frozen within a soliton-network
below the glass transition T_{g}~40 K determined recently in this system.Comment: 7 pages, 3 figures, submitted to Europhysics Letter
Alternativni modeli za složeno opuštanje niskoenergijskih pobuđenja u sustavima s valovima gustoće
We apply the Palmer, Stein, Abrahams and Anderson (PSAA) model of hierarchically constrained dynamics for glassy relaxation to the complex thermal relaxation at very low temperatures in density wave systems. Alternatively, we simulate various experimental conditions in a simple, intuitive model of an electrical RC line and find some relations with the PSAA parameters.Primjenjujemo model Palmera, Steina, Abrahamsa i Andersona (PSAA) za hijerarhijski zapriječenu dinamiku opuštanja u staklima na kompleksno opuštanje topline na vrlo niskim temperaturama u sistemima s valovima gustoće. Jednako tako, pomoću jednostavnog modela slijeda električnih RC (otpor – kapacitet) krugova oponašamo različite eksperimentalne uvjete i nalazimo neke odnose s dobivenim PSAA parametrima
Interplay between phase defects and spin polarization in the specific heat of the spin density wave compound (TMTTF)_2Br in a magnetic field
Equilibrium heat relaxation experiments provide evidence that the ground
state of the commensurate spin density wave (SDW) compound (TMTTF)Br after
the application of a sufficient magnetic field is different from the
conventional ground state. The experiments are interpreted on the basis of the
local model of strong pinning as the deconfinement of soliton-antisoliton pairs
triggered by the Zeeman coupling to spin degrees of freedom, resulting in a
magnetic field induced density wave glass for the spin carrying phase
configuration.Comment: 4 pages, 5 figure
Bimodal energy relaxations in quasi-one-dimensional systems
We show that the low temperature ( K) time dependent non-exponential
energy relaxation of quasi-one-dimensional (quasi-1D) compounds strongly differ
according to the nature of their modulated ground state. For incommensurate
ground states, such as in (TMTSF)PF the relaxation time distribution is
homogeneously shifted to larger time when the duration of the heat input is
increased, and exhibits in addition a scaling between the width and the
position of the peak in the relaxation time distribution,
. For a commensurate ground state, as in
(TMTTF)PF, the relaxation time spectra show a bimodal character with a
weight transfer between well separated slow and fast entities. Our
interpretation is based on the dynamics of defects in the modulated structure,
which depend crucially on the degree of commensurability.Comment: 4 pages, 4 figure
Charge-Density-Wave like Behavior in the One-Dimensional Charge-Ordered Semiconductor (NbSe4)3I
We report on broadband dielectric spectroscopy on the one-dimensional
semiconductor (NbSe4)3I. Below the structural phase transition close to 270 K
we observe colossal dielectric constants with a frequency and temperature
dependence very similar to what is observed in canonical charge-density wave
systems. Guided by structural details we interpret this structural phase
transition as driven by complex charge-order processes.Comment: 4 pages, 3 figure
Low-frequency dynamics of disordered XY spin chains and pinned density waves: from localized spin waves to soliton tunneling
A long-standing problem of the low-energy dynamics of a disordered XY spin
chain is re-examined. The case of a rigid chain is studied where the quantum
effects can be treated quasiclassically. It is shown that as the frequency
decreases, the relevant excitations change from localized spin waves to
two-level systems to soliton-antisoliton pairs. The linear-response correlation
functions are calculated. The results apply to other periodic glassy systems
such as pinned density waves, planar vortex lattices, stripes, and disordered
Luttinger liquids.Comment: (v2) Major improvements in presentation style. One figure added (v3)
Another minor chang
- …