3 research outputs found

    Streamflow variability and the role of snowmelt in a marginal snow environment

    No full text
    Snowmelt in alpine regions supports hydroelectric power generation, water supply, and agricultural production. These regions are warming, and the impact on streamflow of changes in precipitation and the proportion falling as snow is of interest. We investigate the seasonality and interannual variability of streamflow in the Australian Alps, a key location due to the marginal snowpack with winter air temperatures close to 0°C, and focus on a small subalpine catchment with properties representative of an important part of the broader snow-affected region. Streamflow was highly responsive to precipitation inputs with little autocorrelation observed. Water years were divided into four hydrological seasons based on the mean properties of normalized cumulative inflows. The spring snowmelt season accounted for the greatest proportion of annual inflows (mean = 39 percent). However, correlations between seasonal and annual inflows were only significant in the other three seasons, and winter inflows were the most important contributor to annual variability. The present snowpack is highly variable and sensitive to synoptic-scale influences. Although significant future reductions in snow-covered area have been predicted, we find that water resources are more susceptible to observed declines in total precipitation and likely increases in evapotranspiration than to a shift to proportionally less snowfall

    Energy balance and snowmelt drivers of a marginal subalpine snowpack

    No full text
    Snowmelt from the seasonal snowpack in the Australian Alps is a significant source of water for irrigated agriculture, electricity generation, and environmental flows in the Murray–Darling Basin. Previous studies have reported negative decadal to multidecadal trends in maximum snow depth, snow season duration, and snow-covered area. Here, we characterise the energy balance of this marginal maritime snowpack for the first time. Turbulent fluxes measured using the eddy covariance and bulk aerodynamic methods are compared; discrepancies are attributed to the differing assumptions of the methods and characteristics of the measurement site. We examine the variability of the individual energy balance components and the drivers of snowmelt, and we find that incoming longwave radiation is the dominant control on snowmelt, providing more than 80% of the total energy to the snowpack over the season. During a midwinter rain-on-snow event, the advected rain heat flux provided 8% of the daily total, with the incoming longwave flux still accounting for almost 80%. The ground heat flux contributes a small proportion of the seasonal total but increases in patchy or intermittent snow cover. Comparing these results with those of studies in other maritime locations, we find that the turbulent fluxes are likely to make a proportionally higher contribution to the energy balance due to the short Australian snow season, underpinning the sensitivity of this environment to climate variability and change. These results extend the limited body of knowledge on highly marginal snowpacks and may be relevant to other regions with no direct measurements of the energy balance

    Spatial controls on the distribution and dynamics of a marginal snowpack in the Australian Alps

    No full text
    Seasonal snowpacks in marginal snow environments are typically warm and nearly isothermal, exhibiting high inter- and intra-annual variability. Measurements of snow depth and snow water equivalent were made across a small subalpine catchment in the Australian Alps over two snow seasons in order to investigate the extent and implications of snowpack spatial variability in this marginal setting. The distribution and dynamics of the snowpack were found to be influenced by upwind terrain, vegetation, solar radiation, and slope. The role of upwind vegetation was quantified using a novel parameter based on gridded vegetation height. The elevation range of the catchment was relatively modest (185\ua0m), and elevation impacted distribution but not dynamics. Two characteristic features of marginal snowpack behaviour are presented. Firstly, the evolution of the snowpack is described in terms of a relatively unstable accumulation state and a highly stable ablation state, as revealed by temporal variations in the mean and standard deviation of snow water equivalent. Secondly, the validity of partitioning the snow season into distinct accumulation and ablation phases is shown to be compromised in such a setting. Snow at the most marginal locations may undergo complete melt several times during a season and, even where snow cover is more persistent, ablation processes begin to have an effect on the distribution of the snowpack early in the season. Our results are consistent with previous research showing that individual point measurements are unable to fully represent the variability in the snowpack across a catchment, and we show that recognising and addressing this variability are particularly important for studies in marginal snow environments
    corecore