105 research outputs found
Ischemia modified albumin and thiol/disulfide balance in patients with Hashimoto’s thyroiditis
Hashimoto thyroiditis is a common cause of goiter and acquired hypothyroidism in individuals residing in areas of no iodine deficiency. The fact that the structure of serum albumin exhibits changes in ischemic conditions has paved the way for the discovery of a new serum cardiac ischemia marker, Ischemia Modified Albumin. The other one, thiol/disulphide homeostasis, plays an important part in antioxidative protection, detoxification, cell growth, and apoptosis. In this study, we aimed to investigate both the relationship between Thiol/Disulphide homeostasis and Ischemia Modified Albumin in patients diagnosed with Hashimoto’s Thyroiditis. A total of 70 Hashimoto’’s thyroiditis patients and 50 healthy ones were included in this study. Age, gender, thyroid-stimulating hormone (TSH), anti-thyroid peroxidase (TPO), anti-thyroglobulin (TG) levels were recorded. Ischemia Modified Albumin and thiol-disulphid homeostasis parameters were measured through automated spectrophotometric methods. The ages of individuals included in the study ranged from 35 to 58 years. The native thiol/total thiol were found to be significantly lower in Hashimoto patients when compared to those enrolled in the control group (P < 0.05), whereas the Ischemia Modified Albumin, disulphide, native thiol, total thiol, disulphide/native thiol, and disulphide/total thiol were found to be significantly higher in Hashimoto patients when compared to those in the control (P < 0.05). Increased Ischemia Modified Albumin, native and total thiol, and disulphide levels are related to increased oxidative stress. Although Ischemia Modified Albumin and Thiol-disulphide defense are important oxidative indicators in Hashimoto’s Thyroiditis, many determinants are known to be involved in this process
Hydration dynamics at fluorinated protein surfaces
Water-protein interactions dictate many processes crucial to protein function including folding, dynamics, interactions with other biomolecules, and enzymatic catalysis. Here we examine the effect of surface fluorination on water-protein interactions. Modification of designed coiled-coil proteins by incorporation of 5,5,5-trifluoroleucine or (4S)-2-amino-4-methylhexanoic acid enables systematic examination of the effects of side-chain volume and fluorination on solvation dynamics. Using ultrafast fluorescence spectroscopy, we find that fluorinated side chains exert electrostatic drag on neighboring water molecules, slowing water motion at the protein surface
Design of an electrochemical micromachining machine
Electrochemical micromachining (μECM) is a non-conventional machining process based on the phenomenon of electrolysis. μECM became an attractive area of research due to the fact that this process does not create any defective layer after machining and that there is a growing demand for better surface integrity on different micro applications including microfluidics systems, stress-free drilled holes in automotive and aerospace manufacturing with complex shapes, etc. This work presents the design of a next generation μECM machine for the automotive, aerospace, medical and metrology sectors. It has three axes of motion (X, Y, Z) and a spindle allowing the tool-electrode to rotate during machining. The linear slides for each axis use air bearings with linear DC brushless motors and 2-nm resolution encoders for ultra precise motion. The control system is based on the Power PMAC motion controller from Delta Tau. The electrolyte tank is located at the rear of the machine and allows the electrolyte to be changed quickly. This machine features two process control algorithms: fuzzy logic control and adaptive feed rate. A self-developed pulse generator has been mounted and interfaced with the machine and a wire ECM grinding device has been added. The pulse generator has the possibility to reverse the pulse polarity for on-line tool fabrication.The research reported in this paper is supported by the European Commission within the project “Minimizing Defects in Micro-Manufacturing Applications (MIDEMMA)” (FP7-2011-NMPICT- FoF-285614)
Regulator of G-protein signaling 1 critically supports CD8+ TRM cell-mediated intestinal immunity.
Members of the Regulator of G-protein signaling (Rgs) family regulate the extent and timing of G protein signaling by increasing the GTPase activity of Gα protein subunits. The Rgs family member Rgs1 is one of the most up-regulated genes in tissue-resident memory (TRM) T cells when compared to their circulating T cell counterparts. Functionally, Rgs1 preferentially deactivates Gαq, and Gαi protein subunits and can therefore also attenuate chemokine receptor-mediated immune cell trafficking. The impact of Rgs1 expression on tissue-resident T cell generation, their maintenance, and the immunosurveillance of barrier tissues, however, is only incompletely understood. Here we report that Rgs1 expression is readily induced in naïve OT-I T cells in vivo following intestinal infection with Listeria monocytogenes-OVA. In bone marrow chimeras, Rgs1 -/- and Rgs1 +/+ T cells were generally present in comparable frequencies in distinct T cell subsets of the intestinal mucosa, mesenteric lymph nodes, and spleen. After intestinal infection with Listeria monocytogenes-OVA, however, OT-I Rgs1 +/+ T cells outnumbered the co-transferred OT-I Rgs1- /- T cells in the small intestinal mucosa already early after infection. The underrepresentation of the OT-I Rgs1 -/- T cells persisted to become even more pronounced during the memory phase (d30 post-infection). Remarkably, upon intestinal reinfection, mice with intestinal OT-I Rgs1 +/+ TRM cells were able to prevent the systemic dissemination of the pathogen more efficiently than those with OT-I Rgs1 -/- TRM cells. While the underlying mechanisms are not fully elucidated yet, these data thus identify Rgs1 as a critical regulator for the generation and maintenance of tissue-resident CD8+ T cells as a prerequisite for efficient local immunosurveillance in barrier tissues in case of reinfections with potential pathogens
- …