3 research outputs found

    Desirable properties of wood for sustainable development in the twenty-first century

    No full text
    International audienceOur objective is to evaluate how a broad and long-range set of needs for sustainable development will influence commercial requirements for wood and desirable wood properties. We emphasize ways forest products and wood properties can contribute to greenhouse gas (GHG) mitigation and provide a vision for sustainable production and use

    Environmental and Economic Assessment of Portable Systems: Production of Wood-Briquettes and Torrefied-Briquettes to Generate Heat and Electricity

    No full text
    This study assessed the environmental impacts and economic feasibility of generating heat using wood-briquettes (WBs), and heat and electricity using torrefied-wood-briquettes (TWBs). WBs and TWBs were manufactured from forest residues using portable systems and delivered to either residential consumers or power plants in the United States. An integrated cradle-to-grave life-cycle assessment (LCA) and techno-economic analysis (TEA) approach was used to quantify environmental impacts and minimum-selling prices (MSPs) of heat and electricity, respectively. Results illustrated that 82% and 59% of the cradle-to-grave global warming (GW) impact of producing heat resulted from the feedstock preparation in WBs and torrefaction in TWBs, respectively. About 46–54% of total cost in the production of heat were from labor and capital costs only. The GW impact of electricity production with TWBs was dominated by the torrefaction process (48% contribution). Capital cost (50%) was a major contributor to the total cost of electricity production using TWBs. The GW impacts of producing heat were 7–37 gCO₂eq/MJ for WBs, and 14–51 gCO₂eq/MJ for TWBs, whereas producing electricity using TWBs was 146–443 gCO₂eq/kWhe. MSPs of generating heat from WBs and TWBs were €1.09–€1.73 and €1.60–€2.26/MJ, respectively, whereas the MSP of electricity from TWBs was €20–€25/kWhe. Considering carbon and pile-burn credits, MSPs of heat and electricity were reduced by 60–90% compared to the base-case
    corecore