9 research outputs found

    In-situ LIBS and NRA deuterium retention study in porous W-O and compact W coatings loaded by Magnum-PSI

    No full text
    The purpose of this study is to investigate the applicability of in-situ laser induced breakdown spectroscopy (LIBS) for deuterium retention measurements in tungsten coatings with different morphology and oxygen content. These were exposed to a Gaussian beam of deuterium plasma in the Magnum-PSI linear plasma device. The deuterium line intensities determined by LIBS were compared with the deuterium content measured by nuclear reaction analysis (NRA). Both LIBS and NRA results showed that higher deuterium retention was achieved in the coating region corresponding to the periphery of the plasma beam. This decreasing deuterium retention in the central region can be attributed to higher surface temperature. At the same time, the deuterium retention in different coating types assessed by LIBS D intensity was markedly different from the retention determined by NRA. Porous W-O coating with high oxygen content had the highest deuterium retention according to NRA while D intensity obtained by LIBS was an order of magnitude smaller when compared with other coatings. The deuterium retention in compact W coating and thick W coating was almost the same and LIBS D intensities were also comparable for these coatings. The results demonstrate the LIBS applicability and its limits in different coating types.</p

    Overpotential analysis of alkaline and acidic alcohol electrolysers and optimized membrane-electrode assemblies

    Get PDF
    Alcohol electrolysis using polymeric membrane electrolytes is a promising route for storing excess renewable energy in hydrogen, alternative to the thermodynamically limited water electrolysis. By properly choosing the ionic agent (i.e. H+ or OH) and the catalyst support, and by tuning the catalyst structure, we developed membrane-electrode-assemblies which are suitable for cost-effective and efficient alcohol electrolysis. Novel porous electrodes were prepared by Atomic Layer Deposition (ALD) of Pt on a TiO2-Ti web of microfibers and were interfaced to polymeric membranes with either H+ or OH conductivity. Our results suggest that alcohol electrolysis is more efficient using OH conducting membranes under appropriate operation conditions (high pH in anolyte solution). ALD enables better catalyst utilization while it appears that the TiO2-Ti substrate is an ideal alternative to the conventional carbon-based diffusion layers, due to its open structure. Overall, by using our developmental anodes instead of commercial porous electrodes, the performance of the alcohol electrolyser (normalized per mass of Pt) can be increased up to ~30 times

    Overpotential analysis of alkaline and acidic alcohol electrolysers and optimized membrane-electrode assemblies

    No full text
    Alcohol electrolysis using polymeric membrane electrolytes is a promising route for storing excess renewable energy in hydrogen, alternative to the thermodynamically limited water electrolysis. By properly choosing the ionic agent (i.e. H+ or OH) and the catalyst support, and by tuning the catalyst structure, we developed membrane-electrode-assemblies which are suitable for cost-effective and efficient alcohol electrolysis. Novel porous electrodes were prepared by Atomic Layer Deposition (ALD) of Pt on a TiO2-Ti web of microfibers and were interfaced to polymeric membranes with either H+ or OH conductivity. Our results suggest that alcohol electrolysis is more efficient using OH conducting membranes under appropriate operation conditions (high pH in anolyte solution). ALD enables better catalyst utilization while it appears that the TiO2-Ti substrate is an ideal alternative to the conventional carbon-based diffusion layers, due to its open structure. Overall, by using our developmental anodes instead of commercial porous electrodes, the performance of the alcohol electrolyser (normalized per mass of Pt) can be increased up to ~30 times

    Gut microbiome: a new player in gastrointestinal disease

    No full text

    Fortschritte der Mikropaläontologie in Deutschland mit einer Bibliographie für das Jahr 1965

    No full text
    corecore