1,697 research outputs found
Dielectric breakdown II: Related projects at the University of Twente
In this paper an overview is given of the related activities in our group of the University of Twente. These are on thin film transistors with the inherent difficulty of making a gate dielectric at low temperature, on thin dielectrics for EEPROM devices with well-known requirements with respect to charge retention and endurance and, finally, on thin film diodes in displays with unexpected breakdown properties
Neuroprediction and A.I. in Forensic Psychiatry and Criminal Justice: A Neurolaw Perspective
Advances in the use of neuroimaging in combination with A.I., and specifically the use of machine learning techniques, have led to the development of brain-reading technologies which, in the nearby future, could have many applications, such as lie detection, neuromarketing or brain-computer interfaces. Some of these could, in principle, also be used in forensic psychiatry. The application of these methods in forensic psychiatry could, for instance, be helpful to increase the accuracy of risk assessment and to identify possible interventions. This technique could be referred to as ‘A.I. neuroprediction,’ and involves identifying potential neurocognitive markers for the prediction of recidivism. However, the future implications of this technique and the role of neuroscience and A.I. in violence risk assessment remain to be established. In this paper, we review and analyze the literature concerning the use of brain-reading A.I. for neuroprediction of violence and rearrest to identify possibilities and challenges in the future use of these techniques in the fields of forensic psychiatry and criminal justice, considering legal implications and ethical issues. The analysis suggests that additional research is required on A.I. neuroprediction techniques, and there is still a great need to understand how they can be implemented in risk assessment in the field of forensic psychiatry. Besides the alluring potential of A.I. neuroprediction, we argue that its use in criminal justice and forensic psychiatry should be subjected to thorough harms/benefits analyses not only when these technologies will be fully available, but also while they are being researched and developed
Controlling the cold collision shift in high precision atomic interferometry
We present here a new method based on a transfer of population by adiabatic
passage that allows to prepare cold atomic samples with a well defined ratio of
atomic density and atom number. This method is used to perform a measurement of
the cold collision frequency shift in a laser cooled cesium clock at the
percent level, which makes the evaluation of the cesium fountains accuracy at
the level realistic. With an improved set-up, the adiabatic passage
would allow measurements of atom number-dependent phase shifts at the
level in high precision experiments.Comment: 4 pages, 3 figures, 2 table
Integrated Test Development:An integrated and incremental approach to write software of high quality
Recommended from our members
Automatic trip and mode detection with move smarter: First results from the Dutch Mobile Mobility Panel
This paper describes the performance of a smartphone app called MoveSmarter to automatically detect departure and arrival times, trip origins and destinations, transport modes, and travel purposes. The app is used in a three-year smartphone-based prompted-recall panel survey in which about 600 smartphone and non-smartphone owners participated and over 18,000 validated trips were collected during two weeks. MoveSmarter is concluded to be a promising alternative or addition to traditional trip diaries, reducing respondent burden and increasing accuracy of measurement, but there is room to improve trip and mode detection rates and the efficiency of battery consumption
How do Students Test Software Units?
We gained insight into ideas and beliefs on testing of students who finished an introductory course on programming without any formal education on testing. We asked students to fill in a small survey, to do four exercises and to fill in a second survey. We interviewed eleven of these students in semi-structured interviews, to obtain more in-depth insight. The main outcome is that students do not test systematically, while most of them think they do test systematically. One of the misconceptions we found is that most students can only think of test cases based on programming code. Even if no code was provided (black-box testing), students try to come up with code to base their test cases on
Pauli-Lubanski scalar in the Polygon Approach to 2+1-Dimensional Gravity
In this paper we derive an expression for the conserved Pauli-Lubanski scalar
in 't Hooft's polygon approach to 2+1-dimensional gravity coupled to point
particles. We find that it is represented by an extra spatial shift in
addition to the usual identification rule (being a rotation over the cut). For
two particles this invariant is expressed in terms of 't Hooft's phase-space
variables and we check its classical limit.Comment: Some errors are corrected and a new introduction and discussion are
added. 6 pages Latex, 4 eps-figure
Collective Modes in a Dilute Bose-Fermi Mixture
We here study the collective excitations of a dilute spin-polarized
Bose-Fermi mixture at zero temperature, considering in particular the features
arising from the interaction between the two species. We show that a
propagating zero-sound mode is possible for the fermions even when they do not
interact among themselves.Comment: latex, 6 eps figure
- …