5 research outputs found

    Ccaat/enhancer-binding protein delta (C/ebpδ): A previously unrecognized tumor suppressor that limits the oncogenic potential of pancreatic ductal adenocarcinoma cells

    Get PDF
    CCAAT/enhancer-binding protein δ (C/EBPδ) is a transcription factor involved in growth arrest and differentiation, which has consequently been suggested to harbor tumor suppressive activities. However, C/EBPδ over-expression correlates with poor prognosis in glioblastoma and promotes genomic instability in cervical cancer, hinting at an oncogenic role of C/EBPδ in these contexts. Here, we explore the role of C/EBPδ in pancreatic cancer. We determined C/EBPδ expression in biopsies from pancreatic cancer patients using public gene-expression datasets and in-house tissue microarrays. We found that C/EBPδ is highly expressed in healthy pancreatic ductal cells but lost in pancreatic ductal adenocarcinoma. Furthermore, loss of C/EBPδ correlated with increased lymph node involvement and shorter overall survival in pancreatic ductal adenocarcinoma patients. In accordance with this, in vitro experiments showed reduced clonogenic capacity and proliferation of pancreatic ductal adenocarcinoma cells following C/EBPδ re-expression, concurrent with decreased sphere formation capacity in soft agar assays. We thus report a previously unrecognized but important tumor suppressor role of C/EBPδ in pancreatic ductal adenocarcinoma. This is of particular interest since only few tumor suppressors have been identified in the context of pancreatic cancer. Moreover, our findings suggest that restoration of C/EBPδ activity could hold therapeutic value in pancreatic ductal adenocarcinoma, although the latter claim needs to be substantiated in future studies

    A systematic review and meta-analysis of prognostic biomarkers in resectable esophageal adenocarcinomas

    Get PDF
    Targeted therapy is lagging behind in esophageal adenocarcinoma (EAC). To guide the development of new treatment strategies, we provide an overview of the prognostic biomarkers in resectable EAC treated with curative intent. The Medline, Cochrane and EMBASE databases were systematically searched, focusing on overall survival (OS). The quality of the studies was assessed using a scoring system ranging from 0–7 points based on modified REMARK criteria. To evaluate all identified prognostic biomarkers, the hallmarks of cancer were adapted to fit all biomarkers based on their biological function in EAC, resulting in the features angiogenesis, cell adhesion and extra-cellular matrix remodeling, cell cycle, immune, invasion and metastasis, proliferation, and self-renewal. Pooled hazard ratios (HR) and 95% confidence intervals (CI) were derived by random effects meta-analyses performed on each hallmarks of cancer feature. Of the 3298 unique articles identified, 84 were included, with a mean quality of 5.9 points (range 3.5–7). The hallmarks of cancer feature ‘immune’ was most significantly associated with worse OS (HR 1.88, (95%CI 1.20–2.93)). Of the 82 unique prognostic biomarkers identified, meta-analyses showed prominent biomarkers, including COX-2, PAK-1, p14ARF, PD-L1, MET, LC3B, IGFBP7 and LGR5, associated to each hallmark of cancer

    Smoothened-dependent and -independent pathways in mammalian noncanonical Hedgehog signaling

    No full text
    Hedgehog proteins are pivotal morphogens acting through a canonical pathway involving first activation of ligand binding to Patched followed by alleviation of Smoothened receptor inhibition, leading to activation of Gli transcription factors. Noncanonical Hedgehog signaling remains poorly characterized but is thought to be mainly dependent on Smoothened. However, Smoothened inhibitors have yielded only partial success in combating Hedgehog signal transduction-dependent cancer, suggesting that noncanonical Smoothened-independent pathways also are clinically relevant. Moreover, several Smoothened-dependent effects (e.g. neurite projection) do not require transcriptional activation, further suggesting biological importance of noncanonical Smoothened-dependent pathways. We comprehensively characterized the cellular kinome in Hedgehogchallenged murine WT and Smoothened-/- fibroblasts as well as Smoothened agonist-stimulated cells. A peptide assay-based kinome analysis (in which cell lysates are used to phosphorylate specific kinase substrates), along with endocytosis, Lucifer Yellow-based, and immunoblotting assays, identified an elaborate signaling network of both Smoothened-dependent and -independent pathways that mediates actin reorganization through Src-like kinases, activates various proinflammatory signaling cascades, and concomitantly stimulates Wnt and Notch signaling while suppressing bone morphogenetic protein (BMP) signaling. The contribution of noncan

    Dichotomy in hedgehog signaling between human healthy vessel and atherosclerotic plaques

    No full text
    The major cause for plaque instability in atherosclerotic disease is neoangiogenic revascularization, but the factors controlling this process remain only partly understood. Hedgehog (HH) is a morphogen with important functions in revascularization, but its function in human healthy vessel biology as well as in atherosclerotic plaques has not been well investigated. Hence, we determined the status of HH pathway activity both in healthy vessels and atherosclerotic plaques. A series of 10 healthy organ donor-derived human vessels, 17 coronary atherosclerotic plaques and 24 atherosclerotic carotid plaques were investigated for HH pathway activity. We show that a healthy vessel is characterized by a high level of HH pathway activity but that atherosclerotic plaques are devoid of HH signaling despite the presence of HH ligand in these pathological structures. Thus, a dichotomy between healthy vessels and atherosclerotic plaques with respect to the activation status of the HH pathway exists, and it is tempting to suggest that downregulation of HH signaling contributes to long-term plaque stability
    corecore