490 research outputs found

    Well-localized edge states in two-dimensional topological insulators: ultrathin Bi films

    Get PDF
    We theoretically study the generic behavior of the penetration depth of the edge states in two-dimensional quantum spin Hall systems. We found that the momentum-space width of the edge-state dispersion scales with the inverse of the penetration depth. As an example of well-localized edge states, we take the Bi(111) ultrathin film. Its edge states are found to extend almost over the whole Brillouin zone. Correspondingly, the bismuth (111) 1-bilayer system is proposed to have well-localized edge states in contrast to the HgTe quantum well.Comment: 4 pages, 4 figure

    Co atoms on Bi2_{2}Se3_{3} revealing a coverage dependent spin reorientation transition

    Get PDF
    We investigate Co nanostructures on Bi2_{2}Se3_{3} by means of scanning tunneling microscopy and spectroscopy [STM/STS], X-ray absorption spectroscopy [XAS], X-ray magnetic dichroism [XMCD] and calculations using the density functional theory [DFT]. In the single adatom regime we find two different adsorption sites by STM. Our calculations reveal these to be the fcc and hcp hollow sites of the substrate. STS shows a pronounced peak for only one species of the Co adatoms indicating different electronic properties of both types. These are explained on the basis of our DFT calculations by different hybridizations with the substrate. Using XMCD we find a coverage dependent spin reorientation transition from easy-plane toward out-of-plane. We suggest clustering to be the predominant cause for this observation.Comment: 10 pages, 4 figure

    Topological Crystalline Insulator and Quantum Anomalous Hall States in IV-VI based Monolayers and their Quantum Wells

    Get PDF
    Different from the two-dimensional (2D) topological insulator, the 2D topological crystalline insulator (TCI) phase disappears when the mirror symmetry is broken, e.g., upon placing on a substrate. Here, based on a new family of 2D TCIs - SnTe and PbTe monolayers - we theoretically predict the realization of the quantum anomalous Hall effect with Chern number C = 2 even when the mirror symmetry is broken. Remarkably, we also demonstrate that the considered materials retain their large-gap topological properties in quantum well structures obtained by sandwiching the monolayers between NaCl layers. Our results demonstrate that the TCIs can serve as a seed for observing robust topologically non-trivial phases.Comment: 5 pages, submitted on 27th Feb 201

    Thermal collapse of spin-polarization in half-metallic ferromagnets

    Get PDF
    The temperature dependence of the magnetization and spin-polarization at the Fermi level is investigated for half-metallic ferromagnets. We reveal a new mechanism, where the hybridization of states forming the half-metallic gap depends on thermal spin fluctuations and the polarization can drop abruptly at temperatures much lower than the Curie point. We verify this for NiMnSb by ab-initio calculations. The thermal properties are studied by mapping ab-initio results to an extended Heisenberg model which includes longitudinal fluctuations and is solved by a Monte Carlo method

    Magnetic Phase Control in Monolayer Films by Substrate Tuning

    Get PDF
    We propose to tailor exchange interactions in magnetic monolayer films by tuning the adjacent non-magnetic substrate. As an example, we demonstrate a ferromagnetic-antiferromagnetic phase transition for one monolayer Fe on a Ta(x)W(1-x)(001) surface as a function of the Ta concentration. At the critical Ta concentration, the nearest-neighbor exchange interaction is small and the magnetic phase space is dramatically broadened. Complex magnetic order such as spin-spirals, multiple-Q, or even disordered local moment states can occur, offering the possibility to store information in terms of ferromagnetic dots in an otherwise zero-magnetization state matrix.Comment: after minor changes, 5 pages, 5 figures, revtex

    Surface-electronic structure of La(0001) and Lu(0001)

    Get PDF
    Most spectroscopic methods for studying the electronic structure of metal surfaces have the disadvantage that either only occupied or only unoccupied states can be probed, and the signal is cut at the Fermi edge. This leads to significant uncertainties, when states are very close to the Fermi level. By performing low-temperature scanning tunneling spectroscopy and ab initio calculations, we study the surface-electronic structure of La(0001) and Lu(0001), and demonstrate that in this way detailed information on the surface-electronic structure very close to the Fermi energy can be derived with high accuracy.Comment: 6 pages, 4 figures, 1 table submitted to PR
    • …
    corecore