21 research outputs found

    MicroRNA-155 is essential for the optimal proliferation and survival of plasmablast B cells.

    Get PDF
    A fast antibody response can be critical to contain rapidly dividing pathogens. This can be achieved by the expansion of antigen-specific B cells in response to T-cell help followed by differentiation into plasmablasts. MicroRNA-155 (miR-155) is required for optimal T-cell-dependent extrafollicular responses via regulation of PU.1, although the cellular processes underlying this defect are largely unknown. Here, we show that miR-155 regulates the early expansion of B-blasts and later on the survival and proliferation of plasmablasts in a B-cell-intrinsic manner, by tracking antigen-specific B cells in vivo since the onset of antigen stimulation. In agreement, comparative analysis of the transcriptome of miR-155-sufficient and miR-155-deficient plasmablasts at the peak of the response showed that the main processes regulated by miR-155 were DNA metabolic process, DNA replication, and cell cycle. Thus, miR-155 controls the extent of the extrafollicular response by regulating the survival and proliferation of B-blasts, plasmablasts and, consequently, antibody production

    Endogenous retroviral insertions drive non-canonical imprinting in extra-embryonic tissues.

    Get PDF
    BACKGROUND: Genomic imprinting is an epigenetic phenomenon that allows a subset of genes to be expressed mono-allelically based on the parent of origin and is typically regulated by differential DNA methylation inherited from gametes. Imprinting is pervasive in murine extra-embryonic lineages, and uniquely, the imprinting of several genes has been found to be conferred non-canonically through maternally inherited repressive histone modification H3K27me3. However, the underlying regulatory mechanisms of non-canonical imprinting in post-implantation development remain unexplored. RESULTS: We identify imprinted regions in post-implantation epiblast and extra-embryonic ectoderm (ExE) by assaying allelic histone modifications (H3K4me3, H3K36me3, H3K27me3), gene expression, and DNA methylation in reciprocal C57BL/6 and CAST hybrid embryos. We distinguish loci with DNA methylation-dependent (canonical) and independent (non-canonical) imprinting by assaying hybrid embryos with ablated maternally inherited DNA methylation. We find that non-canonical imprints are localized to endogenous retrovirus-K (ERVK) long terminal repeats (LTRs), which act as imprinted promoters specifically in extra-embryonic lineages. Transcribed ERVK LTRs are CpG-rich and located in close proximity to gene promoters, and imprinting status is determined by their epigenetic patterning in the oocyte. Finally, we show that oocyte-derived H3K27me3 associated with non-canonical imprints is not maintained beyond pre-implantation development at these elements and is replaced by secondary imprinted DNA methylation on the maternal allele in post-implantation ExE, while being completely silenced by bi-allelic DNA methylation in the epiblast. CONCLUSIONS: This study reveals distinct epigenetic mechanisms regulating non-canonical imprinted gene expression between embryonic and extra-embryonic development and identifies an integral role for ERVK LTR repetitive elements

    A Novel Checkpoint and RPA Inhibitory Pathway Regulated by Rif1

    Get PDF
    Cells accumulate single-stranded DNA (ssDNA) when telomere capping, DNA replication, or DNA repair is impeded. This accumulation leads to cell cycle arrest through activating the DNA–damage checkpoints involved in cancer protection. Hence, ssDNA accumulation could be an anti-cancer mechanism. However, ssDNA has to accumulate above a certain threshold to activate checkpoints. What determines this checkpoint-activation threshold is an important, yet unanswered question. Here we identify Rif1 (Rap1-Interacting Factor 1) as a threshold-setter. Following telomere uncapping, we show that budding yeast Rif1 has unprecedented effects for a protein, inhibiting the recruitment of checkpoint proteins and RPA (Replication Protein A) to damaged chromosome regions, without significantly affecting the accumulation of ssDNA at those regions. Using chromatin immuno-precipitation, we provide evidence that Rif1 acts as a molecular “band-aid” for ssDNA lesions, associating with DNA damage independently of Rap1. In consequence, small or incipient lesions are protected from RPA and checkpoint proteins. When longer stretches of ssDNA are generated, they extend beyond the junction-proximal Rif1-protected regions. In consequence, the damage is detected and checkpoint signals are fired, resulting in cell cycle arrest. However, increased Rif1 expression raises the checkpoint-activation threshold to the point it simulates a checkpoint knockout and can also terminate a checkpoint arrest, despite persistent telomere deficiency. Our work has important implications for understanding the checkpoint and RPA–dependent DNA–damage responses in eukaryotic cells

    Quantitative Fitness Analysis Shows That NMD Proteins and Many Other Protein Complexes Suppress or Enhance Distinct Telomere Cap Defects

    Get PDF
    To better understand telomere biology in budding yeast, we have performed systematic suppressor/enhancer analyses on yeast strains containing a point mutation in the essential telomere capping gene CDC13 (cdc13-1) or containing a null mutation in the DNA damage response and telomere capping gene YKU70 (yku70Δ). We performed Quantitative Fitness Analysis (QFA) on thousands of yeast strains containing mutations affecting telomere-capping proteins in combination with a library of systematic gene deletion mutations. To perform QFA, we typically inoculate 384 separate cultures onto solid agar plates and monitor growth of each culture by photography over time. The data are fitted to a logistic population growth model; and growth parameters, such as maximum growth rate and maximum doubling potential, are deduced. QFA reveals that as many as 5% of systematic gene deletions, affecting numerous functional classes, strongly interact with telomere capping defects. We show that, while Cdc13 and Yku70 perform complementary roles in telomere capping, their genetic interaction profiles differ significantly. At least 19 different classes of functionally or physically related proteins can be identified as interacting with cdc13-1, yku70Δ, or both. Each specific genetic interaction informs the roles of individual gene products in telomere biology. One striking example is with genes of the nonsense-mediated RNA decay (NMD) pathway which, when disabled, suppress the conditional cdc13-1 mutation but enhance the null yku70Δ mutation. We show that the suppressing/enhancing role of the NMD pathway at uncapped telomeres is mediated through the levels of Stn1, an essential telomere capping protein, which interacts with Cdc13 and recruitment of telomerase to telomeres. We show that increased Stn1 levels affect growth of cells with telomere capping defects due to cdc13-1 and yku70Δ. QFA is a sensitive, high-throughput method that will also be useful to understand other aspects of microbial cell biology

    Leather and Latex: Materials, Morals and Subcultural Style

    No full text
    ‘Leather and Latex: Materials, Morals and Subcultural Style’ was a one-day workshop focused on the subject of material as a means to approach histories of subcultural style. Involving archivists, conservators, theorists and practitioners the day was designed to expand upon the social meanings and political potentialities surrounding these two materials and how they might be historicised and preserved

    LEATHER & LATEX: Materials & Subcultural Style

    No full text
    ‘Leather and Latex: Materials, Morals and Subcultural Style’ is a one-day workshop focused on the subject of material as a means to approach histories of subcultural style. Involving archivists, conservators, theorists and practitioners the day expands upon the social meanings and political potentialities surrounding these two materials and how they might be historicised and preserved. HommAges presented key aspects of their research interests relating to the historical context of latex fetishism in British and European subcultures. This was illustrated by slides as well as a selection of costumes from the Neu Pneumatik! collection. These contributions were extended through a table discussion with fashion designer Theresa Coburn, synthetics conservator Dr Anita Quye, fashion anthropologist Ted Polhemus and archivist Grace Biggins, chaired by Dr. Fiona Jardine
    corecore