285 research outputs found

    Coexpression and activation of TRPV1 suppress the activity of the KCNQ2/3 channel

    Get PDF
    Transient receptor potential vanilloid 1 (TRPV1) is a ligand-gated nonselective cation channel expressed predominantly in peripheral nociceptors. By detecting and integrating diverse noxious thermal and chemical stimuli, and as a result of its sensitization by inflammatory mediators, the TRPV1 receptor plays a key role in inflammation-induced pain. Activation of TRPV1 leads to a cascade of pro-nociceptive mechanisms, many of which still remain to be identified. Here, we report a novel effect of TRPV1 on the activity of the potassium channel KCNQ2/3, a negative regulator of neuronal excitability. Using ion influx assays, we revealed that TRPV1 activation can abolish KCNQ2/3 activity, but not vice versa, in human embryonic kidney (HEK)293 cells. Electrophysiological studies showed that coexpression of TRPV1 caused a 7.5-mV depolarizing shift in the voltage dependence of KCNQ2/3 activation compared with control expressing KCNQ2/3 alone. Furthermore, activation of TRPV1 by capsaicin led to a 54% reduction of KCNQ2/3-mediated current amplitude and attenuation of KCNQ2/3 activation. The inhibitory effect of TRPV1 appears to depend on Ca2+ influx through the activated channel followed by Ca2+-sensitive depletion of phosphatidylinositol 4,5-bisphosphate and activation of protein phosphatase calcineurin. We also identified physical interactions between TRPV1 and KCNQ2/3 coexpressed in HEK293 cells and in rat dorsal root ganglia neurons. Mutation studies established that this interaction is mediated predominantly by the membrane-spanning regions of the respective proteins and correlates with the shift of KCNQ2/3 activation. Collectively, these data reveal that TRPV1 activation may deprive neurons from inhibitory control mediated by KCNQ2/3. Such neurons may thus have a lower threshold for activation, which may indirectly facilitate TRPV1 in integrating multiple noxious signals and/or in the establishment or maintenance of chronic pain

    Incidence and phenotypes of childhood-onset genetic epilepsies:a prospective population-based national cohort

    Get PDF
    Epilepsy is common in early childhood. In this age group it is associated with high rates of therapy-resistance, and with cognitive, motor, and behavioural comorbidity. A large number of genes, with wide ranging functions, are implicated in its aetiology, especially in those with therapy-resistant seizures. Identifying the more common single-gene epilepsies will aid in targeting resources, the prioritization of diagnostic testing and development of precision therapy. Previous studies of genetic testing in epilepsy have not been prospective and population-based. Therefore, the population-incidence of common genetic epilepsies remains unknown. The objective of this study was to describe the incidence and phenotypic spectrum of the most common single-gene epilepsies in young children, and to calculate what proportion are amenable to precision therapy. This was a prospective national epidemiological cohort study. All children presenting with epilepsy before 36 months of age were eligible. Children presenting with recurrent prolonged (>10 min) febrile seizures; febrile or afebrile status epilepticus (>30 min); or with clusters of two or more febrile or afebrile seizures within a 24-h period were also eligible. Participants were recruited from all 20 regional paediatric departments and four tertiary children’s hospitals in Scotland over a 3-year period. DNA samples were tested on a custom-designed 104-gene epilepsy panel. Detailed clinical information was systematically gathered at initial presentation and during follow-up. Clinical and genetic data were reviewed by a multidisciplinary team of clinicians and genetic scientists. The pathogenic significance of the genetic variants was assessed in accordance with the guidelines of UK Association of Clinical Genetic Science (ACGS). Of the 343 patients who met inclusion criteria, 333 completed genetic testing, and 80/333 (24%) had a diagnostic genetic finding. The overall estimated annual incidence of single-gene epilepsies in this well-defined population was 1 per 2120 live births (47.2/100 000; 95% confidence interval 36.9–57.5). PRRT2 was the most common single-gene epilepsy with an incidence of 1 per 9970 live births (10.0/100 000; 95% confidence interval 5.26–14.8) followed by SCN1A: 1 per 12 200 (8.26/100 000; 95% confidence interval 3.93–12.6); KCNQ2: 1 per 17 000 (5.89/100 000; 95% confidence interval 2.24–9.56) and SLC2A1: 1 per 24 300 (4.13/100 000; 95% confidence interval 1.07–7.19). Presentation before the age of 6 months, and presentation with afebrile focal seizures were significantly associated with genetic diagnosis. Single-gene disorders accounted for a quarter of the seizure disorders in this cohort. Genetic testing is recommended to identify children who may benefit from precision treatment and should be mainstream practice in early childhood onset epilepsy

    KV7/KCNQ Channels Are Functionally Expressed in Oligodendrocyte Progenitor Cells

    Get PDF
    Background: KV7/KCNQ channels are widely expressed in neurons and they have multiple important functions, including control of excitability, spike afterpotentials, adaptation, and theta resonance. Mutations in KCNQ genes have been demonstrated to associate with human neurological pathologies. However, little is known about whether K V7/KCNQ channels are expressed in oligodendrocyte lineage cells (OLCs) and what their functions in OLCs. Methods and Findings: In this study, we characterized KV7/KCNQ channels expression in rat primary cultured OLCs by RT-PCR, immunostaining and electrophysiology. KCNQ2-5 mRNAs existed in all three developmental stages of rat primary cultured OLCs. K V7/KCNQ proteins were also detected in oligodendrocyte progenitor cells (OPCs, early developmental stages of OLCs) of rat primary cultures and cortex slices. Voltage-clamp recording revealed that the IM antagonist XE991 significantly reduced KV7/KCNQ channel current (IK(Q)) in OPCs but not in differentiated oligodendrocytes. In addition, inhibition of K V7/KCNQ channels promoted OPCs motility in vitro. Conclusions: These findings showed that K V7/KCNQ channels were functionally expressed in rat primary cultured OLCs an

    Structure, Function, and Modification of the Voltage Sensor in Voltage-Gated Ion Channels

    Full text link

    Cyclic AMP-Dependent Regulation of Kv7 Voltage-Gated Potassium Channels

    Get PDF
    Voltage-gated Kv7 potassium channels, encoded by KCNQ genes, have major physiological impacts cardiac myocytes, neurons, epithelial cells, and smooth muscle cells. Cyclic adenosine monophosphate (cAMP), a well-known intracellular secondary messenger, can activate numerous downstream effector proteins, generating downstream signaling pathways that regulate many functions in cells. A role for cAMP in ion channel regulation has been established, and recent findings show that cAMP signaling plays a role in Kv7 channel regulation. Although cAMP signaling is recognized to regulate Kv7 channels, the precise molecular mechanism behind the cAMP-dependent regulation of Kv7 channels is complex. This review will summarize recent research findings that support the mechanisms of cAMP-dependent regulation of Kv7 channels
    • …
    corecore