56 research outputs found
Recommended from our members
Intracellular shuttling of a Drosophila APC tumour suppressor homolog
RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Background The Adenomatous polyposis coli (APC) tumour suppressor is found in multiple discrete subcellular locations, which may reflect sites of distinct functions. In Drosophila epithelial cells, the predominant APC relative (E-APC) is concentrated at the apicolateral adherens junctions. Genetic analysis indicates that this junctional association is critical for the function of E-APC in Wnt signalling and in cellular adhesion. Here, we ask whether the junctional association of E-APC is stable, or whether E-APC shuttles between the plasma membrane and the cytoplasm. Results We generated a Drosophila strain that expresses E-APC (dAPC2) tagged with green fluorescent protein (GFP-E-APC) and we analysed its junctional association with fluorescence recovery after photobleaching (FRAP) experiments in live embryos. This revealed that the junctional association of GFP-E-APC in epithelial cells is highly dynamic, and is far less stable than that of the structural components of the adherens junctions, E-cadherin, α-catenin and Armadillo. The shuttling of GFP-E-APC to and from the plasma membrane is unaltered in mutants of Drosophila glycogen synthase kinase 3 (GSK3), which mimic constitutive Wingless signalling. However, the stability of E-APC is greatly reduced in these mutants, explaining their apparent delocalisation from the plasma membrane as previously observed. Finally, we show that GFP-E-APC forms dynamic patches at the apical plasma membrane of late embryonic epidermal cells that form denticles, and that it shuttles up and down the axons of the optic lobe. Conclusions We conclude that E-APC is a highly mobile protein that shuttles constitutively between distinct subcellular locations.Published versio
The Adenomatous polyposis coli tumour suppressor is essential for Axin complex assembly and function and opposes Axin's interaction with Dishevelled
Most cases of colorectal cancer are linked to mutational inactivation of the Adenomatous polyposis coli (APC) tumour suppressor. APC downregulates Wnt signalling by enabling Axin to promote the degradation of the Wnt signalling effector β-catenin (Armadillo in flies). This depends on Axin's DIX domain whose polymerization allows it to form dynamic protein assemblies (‘degradasomes’). Axin is inactivated upon Wnt signalling, by heteropolymerization with the DIX domain of Dishevelled, which recruits it into membrane-associated ‘signalosomes’. How APC promotes Axin's function is unclear, especially as it has been reported that APC's function can be bypassed by overexpression of Axin. Examining apc null mutant Drosophila tissues, we discovered that APC is required for Axin degradasome assembly, itself essential for Armadillo downregulation. Degradasome assembly is also attenuated in APC mutant cancer cells. Notably, Axin becomes prone to Dishevelled-dependent plasma membrane recruitment in the absence of APC, indicating a crucial role of APC in opposing the interaction of Axin with Dishevelled. Indeed, co-expression experiments reveal that APC displaces Dishevelled from Axin assemblies, promoting degradasome over signalosome formation in the absence of Wnts. APC thus empowers Axin to function in two ways—by enabling its DIX-dependent self-assembly, and by opposing its DIX-dependent copolymerization with Dishevelled and consequent inactivation
Recommended from our members
Feedback control of Wnt signaling based on ultrastable histidine cluster co-aggregation between Naked/NKD and Axin.
Feedback control is a universal feature of cell signaling pathways. Naked/NKD is a widely conserved feedback regulator of Wnt signaling which controls animal development and tissue homeostasis. Naked/NKD destabilizes Dishevelled, which assembles Wnt signalosomes to inhibit the β-catenin destruction complex via recruitment of Axin. Here, we discover that the molecular mechanism underlying Naked/NKD function relies on its assembly into ultra-stable decameric core aggregates via its conserved C-terminal histidine cluster (HisC). HisC aggregation is facilitated by Dishevelled and depends on accumulation of Naked/NKD during prolonged Wnt stimulation. Naked/NKD HisC cores co-aggregate with a conserved histidine cluster within Axin, to destabilize it along with Dishevelled, possibly via the autophagy receptor p62, which binds to HisC aggregates. Consistent with this, attenuated Wnt responses are observed in CRISPR-engineered flies and human epithelial cells whose Naked/NKD HisC has been deleted. Thus, HisC aggregation by Naked/NKD provides context-dependent feedback control of prolonged Wnt responses
Recommended from our members
Regulation of Dishevelled DEP domain swapping by conserved phosphorylation sites.
Wnt signals bind to Frizzled receptors to trigger canonical and noncanonical signaling responses that control cell fates during animal development and tissue homeostasis. All Wnt signals are relayed by the hub protein Dishevelled. During canonical (β-catenin-dependent) signaling, Dishevelled assembles signalosomes via dynamic head-to-tail polymerization of its Dishevelled and Axin (DIX) domain, which are cross-linked by its Dishevelled, Egl-10, and Pleckstrin (DEP) domain through a conformational switch from monomer to domain-swapped dimer. The domain-swapped conformation of DEP masks the site through which Dishevelled binds to Frizzled, implying that DEP domain swapping results in the detachment of Dishevelled from Frizzled. This would be incompatible with noncanonical Wnt signaling, which relies on long-term association between Dishevelled and Frizzled. It is therefore likely that DEP domain swapping is differentially regulated during canonical and noncanonical Wnt signaling. Here, we use NMR spectroscopy and cell-based assays to uncover intermolecular contacts in the DEP dimer that are essential for its stability and for Dishevelled function in relaying canonical Wnt signals. These contacts are mediated by an intrinsically structured sequence spanning a conserved phosphorylation site upstream of the DEP domain that serves to clamp down the swapped N-terminal α-helix onto the structural core of a reciprocal DEP molecule in the domain-swapped configuration. Mutations of this phosphorylation site and its cognate surface on the reciprocal DEP core attenuate DEP-dependent dimerization of Dishevelled and its canonical signaling activity in cells without impeding its binding to Frizzled. We propose that phosphorylation of this crucial residue could be employed to switch off canonical Wnt signaling
DIX Domain Polymerization Drives Assembly of Plant Cell Polarity Complexes
The identities of cell polarity determinants are not conserved between animals and plants; however, characterization of a DIX-domain containing protein in land plants reveals that the physical principles of polar complex assembly are preserved across eukaryotes.</p
An intrinsically labile α-helix abutting the BCL9-binding site of β-catenin is required for its inhibition by carnosic acid.
Wnt/β-catenin signalling controls development and tissue homeostasis. Moreover, activated β-catenin can be oncogenic and, notably, drives colorectal cancer. Inhibiting oncogenic β-catenin has proven a formidable challenge. Here we design a screen for small-molecule inhibitors of β-catenin's binding to its cofactor BCL9, and discover five related natural compounds, including carnosic acid from rosemary, which attenuates transcriptional β-catenin outputs in colorectal cancer cells. Evidence from NMR and analytical ultracentrifugation demonstrates that the carnosic acid response requires an intrinsically labile α-helix (H1) amino-terminally abutting the BCL9-binding site in β-catenin. Similarly, in colorectal cancer cells with hyperactive β-catenin signalling, carnosic acid targets predominantly the transcriptionally active ('oncogenic') form of β-catenin for proteasomal degradation in an H1-dependent manner. Hence, H1 is an 'Achilles' Heel' of β-catenin, which can be exploited for destabilization of oncogenic β-catenin by small molecules, providing proof-of-principle for a new strategy for developing direct inhibitors of oncogenic β-catenin
Boosting Wnt activity during colorectal cancer progression through selective hypermethylation of Wnt signaling antagonists.
BACKGROUND: There is emerging evidence that Wnt pathway activity may increase during the progression from colorectal adenoma to carcinoma and that this increase is potentially an important step towards the invasive stage. Here, we investigated whether epigenetic silencing of Wnt antagonists is the biological driver for this increased Wnt activity in human tissues and how these methylation changes correlate with MSI (Microsatelite Instability) and CIMP (CpG Island Methylator Phenotype) statuses as well as known mutations in genes driving colorectal neoplasia. METHODS: We conducted a systematic analysis by pyrosequencing, to determine the promoter methylation of CpG islands associated with 17 Wnt signaling component genes. Methylation levels were correlated with MSI and CIMP statuses and known mutations within the APC, BRAF and KRAS genes in 264 matched samples representing the progression from normal to pre-invasive adenoma to colorectal carcinoma. RESULTS: We discovered widespread hypermethylation of the Wnt antagonists SFRP1, SFRP2, SFRP5, DKK2, WIF1 and SOX17 in the transition from normal to adenoma with only the Wnt antagonists SFRP1, SFRP2, DKK2 and WIF1 showing further significant increase in methylation from adenoma to carcinoma. We show this to be accompanied by loss of expression of these Wnt antagonists, and by an increase in nuclear Wnt pathway activity. Mixed effects models revealed that mutations in APC, BRAF and KRAS occur at the transition from normal to adenoma stages whilst the hypermethylation of the Wnt antagonists continued to accumulate during the transitions from adenoma to carcinoma stages. CONCLUSION: Our study provides strong evidence for a correlation between progressive hypermethylation and silencing of several Wnt antagonists with stepping-up in Wnt pathway activity beyond the APC loss associated tumour-initiating Wnt signalling levels.A.L.S. was supported by the Fundacao para a Ciencia e Tecnologia (Portugal);
A.I. by a Clinician Scientist Fellowship from Cancer Research UK (grant no
C10112/A11388); M.B. by the Medical Research Council (U105192713) and by
Cancer Research UK (grant no C7379/A8709).This is the final published version. It first appeared at http://www.biomedcentral.com/1471-2407/14/891
β-Catenin: A Pivot between Cell Adhesion and Wnt Signalling
AbstractMutual adhesion of animal cells is intimately linked to Wnt signaling through a shared component: β-catenin, or Armadillo in Drosophila. Recent work indicates how β-catenin shifts from cell adhesion to Wnt signaling, a switch associated with epithelial–mesenchymal transitions and cancer
- …