7 research outputs found

    C. elegans RPM-1 regulates axon termination and synaptogenesis through the Rab GEF GLO-4 and the Rab GTPase GLO-1.

    No full text
    C. elegans RPM-1 (for Regulator of Presynaptic Morphology) is a member of a conserved protein family that includes Drosophila Highwire and mammalian Pam and Phr1. These are large proteins recently shown to regulate synaptogenesis through E3 ubiquitin ligase activities. Here, we report the identification of an RCC1-like guanine nucleotide exchange factor, GLO-4, from mass spectrometry analysis of RPM-1-associated proteins. GLO-4 colocalizes with RPM-1 at presynaptic terminals. Loss of function in glo-4 or in its target Rab GTPase, glo-1, causes neuronal defects resembling those in rpm-1 mutants. We show that the glo pathway functions downstream of rpm-1 and acts in parallel to fsn-1, a partner of RPM-1 E3 ligase function. We find that late endosomes are specifically disorganized at the presynaptic terminals of glo-4 mutants. Our data suggest that RPM-1 positively regulates a Rab GTPase pathway to promote vesicular trafficking via late endosomes

    Proteomics of methylene blue photo-treated plasma before and after removal of the dye by an absorbent filter.

    No full text
    Methylene blue (MB) and light are used for virus inactivation of plasma for transfusion. However, the presence of MB has been the subject of concern, and efforts have been made to efficiently remove the dye after photo-treatment. For this study, plasma was collected by apheresis from 10 donors (group A), then treated using the MacoPharma THERAFLEX procedure (MB; 1 microM, and light exposure; 180 J/cm(2)) (group B), and finally filtered in order to remove the dye (group C). Proteins were analyzed by two-dimensional electrophoresis, and peptides showing modifications were characterized by mass spectrometry. Clottable and antigenic fibrinogen levels, as well as fibrin polymerization time were measured. Analyses of the gels focused on a region corresponding to pI between 4.5 and 6.5, and M(r) from 7000 to 58 000. In this area, 387 +/- 47 spots matched, and four of these spots presented significant modifications. They corresponded to changes of the gamma-chain of fibrinogen, of transthyretin, and of apolipoprotein A-I, respectively. A decrease of clottable fibrinogen and a prolongation of fibrin polymerization time were observed in groups B and C. Removal of MB by filtration was not responsible for additional protein alterations. The effect of over-treatment of plasma by very high concentrations of MB (50 microM) in association with prolonged light exposure (3 h) was also analyzed, and showed complex alterations of most of the plasma proteins, including fibrinogen gamma-chain, transthyretin, and apolipoprotein A-I. Our data indicates that MB treatment at high concentration and prolonged illumination severely injure plasma proteins. By contrast, at the MB concentration used to inactivate viruses, damages are apparently very restricted

    Identification of biologic markers of the premature rupture of fetal membranes: proteomic approach.

    No full text
    In obstetrics, premature rupture of the membranes (PROM) is a frequent observation which is responsible for many premature deliveries. PROM is also associated with an increased risk of fetal and maternal infections. Early diagnosis is mandatory in order to decrease such complications. Despite that current biological tests allowing the diagnosis of PROM are both sensitive and specific, contamination of the samples by maternal blood can induce false positive results. Therefore, in order to identify new potential markers of PROM (present only in amniotic blood, and absent in maternal blood), proteomic studies were undertaken on samples collected from six women at terms (pairs of maternal plasma and amniotic fluid) as well as on four samples of amniotic fluid collected from other women at the 17(th) week of gestation. All samples (N = 16) were analyzed by two-dimensional (2-D) high-resolution electrophoresis, followed by sensitive silver staining. The gel images were studied using bioinformatic tools. Analyses were focused on regions corresponding to pI between 4.5 and 7 and to molecular masses between 20 and 50 kDa. In this area, 646 +/- 113 spots were detected, and 27 spots appeared to be present on the gels of amniotic fluid, but were absent on those of maternal plasma. Nine out of these 27 spots were also observed on the gels of the four samples of amniotic fluids collected at the 17(th) week of pregnancy. Five of these 9 spots were unambiguously detected on preparative 2-D gels stained by Coomassie blue, and were identified by mass spectrometry analyses. Three spots corresponded to fragments of plasma proteins, and 2 appeared to be fragments of proteins not known to be present in plasma. These 2 proteins were agrin (SWISS-PROT: O00468) and perlecan (SWISS-PROT: P98160). Our results show that proteomics is a valuable approach to identify new potential biological markers for future PROM diagnosis

    Identification of biologic markers of the premature rupture of fetal membranes: proteomic approach.

    No full text
    In obstetrics, premature rupture of the membranes (PROM) is a frequent observation which is responsible for many premature deliveries. PROM is also associated with an increased risk of fetal and maternal infections. Early diagnosis is mandatory in order to decrease such complications. Despite that current biological tests allowing the diagnosis of PROM are both sensitive and specific, contamination of the samples by maternal blood can induce false positive results. Therefore, in order to identify new potential markers of PROM (present only in amniotic blood, and absent in maternal blood), proteomic studies were undertaken on samples collected from six women at terms (pairs of maternal plasma and amniotic fluid) as well as on four samples of amniotic fluid collected from other women at the 17(th) week of gestation. All samples (N = 16) were analyzed by two-dimensional (2-D) high-resolution electrophoresis, followed by sensitive silver staining. The gel images were studied using bioinformatic tools. Analyses were focused on regions corresponding to pI between 4.5 and 7 and to molecular masses between 20 and 50 kDa. In this area, 646 +/- 113 spots were detected, and 27 spots appeared to be present on the gels of amniotic fluid, but were absent on those of maternal plasma. Nine out of these 27 spots were also observed on the gels of the four samples of amniotic fluids collected at the 17(th) week of pregnancy. Five of these 9 spots were unambiguously detected on preparative 2-D gels stained by Coomassie blue, and were identified by mass spectrometry analyses. Three spots corresponded to fragments of plasma proteins, and 2 appeared to be fragments of proteins not known to be present in plasma. These 2 proteins were agrin (SWISS-PROT: O00468) and perlecan (SWISS-PROT: P98160). Our results show that proteomics is a valuable approach to identify new potential biological markers for future PROM diagnosis

    Proteomics application exercise of the Swiss Proteomics Society: report of the SPS'02 session.

    No full text
    After the success of the mass spectrometry (MS) round table that was held at the first Swiss Proteomics Society congress (SPS'01) in Geneva, the SPS has organized a proteomics application exercise and allocated a full session at the SPS'02 congress. The main objective was to encourage the exchange of expertise in protein identification, with a focus on the use of mass spectrometry, and to create a bridge between the users' questions and the instrument providers' solutions. Two samples were sent to fifteen interested labs, including academic groups and MS hardware providers. Participants were asked to identify and partially characterize the samples. They consisted of a complex mixture of peptide/proteins (sample A) and an almost pure recombinant peptide carrying post-translational modifications (sample B). Sample A was an extract of snake venom from the species Bothrops jararaca. Sample B was a recombinant and modified peptide derived from the shrimp Penaeus vannamei penaeidin 3a. The eight labs that returned results reported the use of a wide range of MS instrumentation and techniques. They mentioned a variety of time and manpower allocations. The origin of sample A was generally identified together with a number of database protein entries. The difficulty of the sample identification lay in the incomplete knowledge of the Bothrops species genome sequence and is discussed. Sample B was generally and correctly identified as penaeidin. However, only one group reported the full primary structure. Interestingly, the approaches were again varied and are discussed in the text
    corecore