363 research outputs found
Detector dead-time effects and paralyzability in high-speed quantum key distribution
Recent advances in quantum key distribution (QKD) have given rise to systems
that operate at transmission periods significantly shorter than the dead times
of their component single-photon detectors. As systems continue to increase in
transmission rate, security concerns associated with detector dead times can
limit the production rate of sifted bits. We present a model of high-speed QKD
in this limit that identifies an optimum transmission rate for a system with
given link loss and detector response characteristics
Sum-frequency generation of 589 nm light with near-unit efficiency
We report on a laser source at 589 nm based on sum-frequency generation of
two infrared laser at 1064 nm and 1319 nm. Output power as high as 800 mW are
achieved starting from 370 mW at 1319 nm and 770 mW at 1064 nm, corresponding
to converting roughly 90% of the 1319 nm photons entering the cavity. The power
and frequency stability of this source are ideally suited for cooling and
trapping of sodium atoms
Harnessing high-dimensional hyperentanglement through a biphoton frequency comb
Quantum entanglement is a fundamental resource for secure information
processing and communications, where hyperentanglement or high-dimensional
entanglement has been separately proposed towards high data capacity and error
resilience. The continuous-variable nature of the energy-time entanglement
makes it an ideal candidate for efficient high-dimensional coding with minimal
limitations. Here we demonstrate the first simultaneous high-dimensional
hyperentanglement using a biphoton frequency comb to harness the full potential
in both energy and time domain. The long-postulated Hong-Ou-Mandel quantum
revival is exhibited, with up to 19 time-bins, 96.5% visibilities. We further
witness the high-dimensional energy-time entanglement through Franson revivals,
which is observed periodically at integer time-bins, with 97.8% visibility.
This qudit state is observed to simultaneously violate the generalized Bell
inequality by up to 10.95 deviations while observing recurrent
Clauser-Horne-Shimony-Holt S-parameters up to 2.76. Our biphoton frequency comb
provides a platform in photon-efficient quantum communications towards the
ultimate channel capacity through energy-time-polarization high-dimensional
encoding
Recommended from our members
Partial Harvesting in Intensive Shrim Culture: A Network-Flow Model
Theoretically, partially harvesting the standing stock of cultured species over the growout cycle to reduce competitive pressure due to increased biomass could enhance growth and total yield. There are several promising laboratory results and theoretical arguments on the potential of partial harvesting in enhancing the productivity and profitability of intensive shrimp growout facilities. However, the implementation of
partial harvesting in practical operation is rather difficult due to its complex nature. In this paper, we developed a practical model of partial harvesting using the network-flow approach so that it can be readily implemented and solved in MS EXCEL. We demonstrated the use of this spreadsheet model with data from a commercial shrimp farm in Hawaii. The results indicate that the model is capable of identifying the efficient harvest policy as well as assessing the viability of partial harvesting under a variety of managerial conditions and objectives
A Nanocryotron Ripple Counter Integrated with a Superconducting Nanowire Single-Photon Detector for Megapixel Arrays
Decreasing the number of cables that bring heat into the cryocooler is a
critical issue for all cryoelectronic devices. Especially, arrays of
superconducting nanowire single-photon detectors (SNSPDs) could require more
than readout lines. Performing signal processing operations at low
temperatures could be a solution. Nanocryotrons, superconducting nanowire
three-terminal devices, are good candidates for integrating sensing and
electronics on the same technological platform as SNSPDs in photon-counting
applications. In this work, we demonstrated that it is possible to read out,
process, encode, and store the output of SNSPDs using exclusively
superconducting nanowires. In particular, we present the design and development
of a nanocryotron ripple counter that detects input voltage spikes and converts
the number of pulses to an -digit value. The counting base can be tuned from
2 to higher values, enabling higher maximum counts without enlarging the
circuit. As a proof-of-principle, we first experimentally demonstrated the
building block of the counter, an integer- frequency divider with
ranging from 2 to 5. Then, we demonstrated photon-counting operations at
405\,nm and 1550\,nm by coupling an SNSPD with a 2-digit nanocryotron counter
partially integrated on-chip. The 2-digit counter operated in either base 2 or
base 3 with a bit error rate lower than and a maximum count
rate of s. We simulated circuit architectures for
integrated readout of the counter state, and we evaluated the capabilities of
reading out an SNSPD megapixel array that would collect up to counts
per second. The results of this work, combined with our recent publications on
a nanocryotron shift register and logic gates, pave the way for the development
of nanocryotron processors, from which multiple superconducting platforms may
benefit
High phytoplankton growth and production rates in oligotrophic Hawaiian coastal waters
Plankton biomass, material fluxes, e.g. 14C uptake, and specific growth rates are related quantities. In the course of comparing various methods of measuring these properties in September 1982 off Oahu, Hawaii, we found specific growth rates of 1–2·d−1. Such rates approach the maximum expected values observed in laboratory cultures
- …