363 research outputs found

    Detector dead-time effects and paralyzability in high-speed quantum key distribution

    Full text link
    Recent advances in quantum key distribution (QKD) have given rise to systems that operate at transmission periods significantly shorter than the dead times of their component single-photon detectors. As systems continue to increase in transmission rate, security concerns associated with detector dead times can limit the production rate of sifted bits. We present a model of high-speed QKD in this limit that identifies an optimum transmission rate for a system with given link loss and detector response characteristics

    Sum-frequency generation of 589 nm light with near-unit efficiency

    Full text link
    We report on a laser source at 589 nm based on sum-frequency generation of two infrared laser at 1064 nm and 1319 nm. Output power as high as 800 mW are achieved starting from 370 mW at 1319 nm and 770 mW at 1064 nm, corresponding to converting roughly 90% of the 1319 nm photons entering the cavity. The power and frequency stability of this source are ideally suited for cooling and trapping of sodium atoms

    Harnessing high-dimensional hyperentanglement through a biphoton frequency comb

    Full text link
    Quantum entanglement is a fundamental resource for secure information processing and communications, where hyperentanglement or high-dimensional entanglement has been separately proposed towards high data capacity and error resilience. The continuous-variable nature of the energy-time entanglement makes it an ideal candidate for efficient high-dimensional coding with minimal limitations. Here we demonstrate the first simultaneous high-dimensional hyperentanglement using a biphoton frequency comb to harness the full potential in both energy and time domain. The long-postulated Hong-Ou-Mandel quantum revival is exhibited, with up to 19 time-bins, 96.5% visibilities. We further witness the high-dimensional energy-time entanglement through Franson revivals, which is observed periodically at integer time-bins, with 97.8% visibility. This qudit state is observed to simultaneously violate the generalized Bell inequality by up to 10.95 deviations while observing recurrent Clauser-Horne-Shimony-Holt S-parameters up to 2.76. Our biphoton frequency comb provides a platform in photon-efficient quantum communications towards the ultimate channel capacity through energy-time-polarization high-dimensional encoding

    A Nanocryotron Ripple Counter Integrated with a Superconducting Nanowire Single-Photon Detector for Megapixel Arrays

    Full text link
    Decreasing the number of cables that bring heat into the cryocooler is a critical issue for all cryoelectronic devices. Especially, arrays of superconducting nanowire single-photon detectors (SNSPDs) could require more than 10610^6 readout lines. Performing signal processing operations at low temperatures could be a solution. Nanocryotrons, superconducting nanowire three-terminal devices, are good candidates for integrating sensing and electronics on the same technological platform as SNSPDs in photon-counting applications. In this work, we demonstrated that it is possible to read out, process, encode, and store the output of SNSPDs using exclusively superconducting nanowires. In particular, we present the design and development of a nanocryotron ripple counter that detects input voltage spikes and converts the number of pulses to an NN-digit value. The counting base can be tuned from 2 to higher values, enabling higher maximum counts without enlarging the circuit. As a proof-of-principle, we first experimentally demonstrated the building block of the counter, an integer-NN frequency divider with NN ranging from 2 to 5. Then, we demonstrated photon-counting operations at 405\,nm and 1550\,nm by coupling an SNSPD with a 2-digit nanocryotron counter partially integrated on-chip. The 2-digit counter operated in either base 2 or base 3 with a bit error rate lower than 2×10−42 \times 10^{-4} and a maximum count rate of 45×106 45 \times 10^6\,s−1^{-1}. We simulated circuit architectures for integrated readout of the counter state, and we evaluated the capabilities of reading out an SNSPD megapixel array that would collect up to 101210^{12} counts per second. The results of this work, combined with our recent publications on a nanocryotron shift register and logic gates, pave the way for the development of nanocryotron processors, from which multiple superconducting platforms may benefit

    High phytoplankton growth and production rates in oligotrophic Hawaiian coastal waters

    Get PDF
    Plankton biomass, material fluxes, e.g. 14C uptake, and specific growth rates are related quantities. In the course of comparing various methods of measuring these properties in September 1982 off Oahu, Hawaii, we found specific growth rates of 1–2·d−1. Such rates approach the maximum expected values observed in laboratory cultures
    • …
    corecore