51 research outputs found

    Quantum optical master equation for solid-state quantum emitters

    Get PDF
    We provide an elementary description of the dynamics of defect centers in crystals in terms of a quantum optical master equation which includes spontaneous decay and a simplified vibronic interaction with lattice phonons. We present the general solution of the dynamical equation by means of the eigensystem of the Liouville operator and exemplify the usage of this damping basis to calculate the dynamics of the electronic and vibrational degrees of freedom and to provide an analysis of the spectra of scattered light. The dynamics and spectral features are discussed with respect to the applicability for color centers, especially for negatively charged nitrogen-vacancy centers in diamond.Comment: 13 pages, 4 figure

    Cooling the motion of a trapped atom with a cavity field

    Full text link
    We theoretically analyze the cooling dynamics of an atom which is tightly trapped inside a high-finesse optical resonator. Cooling is achieved by suitably tailored scattering processes, in which the atomic dipole transition either scatters a cavity photon into the electromagnetic field external to the resonator, or performs a stimulated emission into the cavity mode, which then dissipates via the cavity mirrors. We identify the parameter regimes in which the atom center-of-mass motion can be cooled into the ground state of the external trap. We predict, in particular, that for high cooperativities interference effects mediated by the atomic transition may lead to higher efficiencies. The dynamics is compared with the cooling dynamics of a trapped atom inside a resonator studied in [Phys. Rev. Lett. 95, 143001, (2005)] where the atom, instead of the cavity, is driven by a laser field
    • …
    corecore