58 research outputs found

    Structure of incommensurate gold sulfide monolayer on Au(111)

    Get PDF
    We develop an atomic-scale model for an ordered incommensurate gold sulfide (AuS) adlayer which has previously been demonstrated to exist on the Au(111) surface, following sulfur deposition and annealing to 450 K. Our model reproduces experimental scanning tunneling microscopy images. Using state-of-the-art Wannier-function-based techniques, we analyze the nature of bonding in this structure and provide an interpretation of the unusual stoichiometry of the gold sulfide layer. The proposed structure and its chemistry have implications for related S-Au interfaces, as in those involved in self-assembled monolayers of thiols on Au substrates

    Nanographene Aerogels: Size Effect of the Precursor Graphene Oxide on Gelation Process and Electrochemical Properties

    Get PDF
    Improving the electrochemical properties of graphene aerogels (GAs) without doping or making composites is an attractive synthetic strategy. In this work we report on the effects of graphene sheet dimensions on GAs. Nanographene aerogels (nG-AGs) were synthesized using nanographene oxide (nGO) powder with a mean platelet diameter of 90 nm. In-situ Fourier transform infrared spectroscopy (FTIR) during gelation revealed a longer fast gelation regime for nG-AGs than for stdG-AGs. The surface-area-normalized capacitance of nG-AGs calculated from cyclic voltammetry is 16% higher than that of stdG-AGs, and the onset of hydrogen evolution is observed at a lower over-potential. These observations can be attributed to increased edge sites and defects in nanographene sheets. Our results imply that the diameter of the precursor graphene sheets can be used as a parameter to optimize the electrochemical properties of graphene AGs depending on the application

    Nanographene Aerogels: Size Effect of the Precursor Graphene Oxide on Gelation Process and Electrochemical Properties

    Get PDF
    Improving the electrochemical properties of graphene aerogels (GAs) without doping or making composites is an attractive synthetic strategy. In this work we report on the effects of graphene sheet dimensions on GAs. Nanographene aerogels (nG-AGs) were synthesized using nanographene oxide (nGO) powder with a mean platelet diameter of 90 nm. In-situ Fourier transform infrared spectroscopy (FTIR) during gelation revealed a longer fast gelation regime for nG-AGs than for stdG-AGs. The surface-area-normalized capacitance of nG-AGs calculated from cyclic voltammetry is 16% higher than that of stdG-AGs, and the onset of hydrogen evolution is observed at a lower over-potential. These observations can be attributed to increased edge sites and defects in nanographene sheets. Our results imply that the diameter of the precursor graphene sheets can be used as a parameter to optimize the electrochemical properties of graphene AGs depending on the application

    Ultra-low-density digitally architected carbon with a strutted tube-in-tube structure

    Get PDF
    Porous materials with engineered stretching-dominated lattice designs, which offer attractive mechanical properties with ultra-light weight and large surface area for wide-ranging applications, have recently achieved near-ideal linear scaling between stiffness and density. Here, rather than optimizing the microlattice topology, we explore a different approach to strengthen low-density structural materials by designing tube-in-tube beam structures. We develop a process to transform fully dense, three-dimensional printed polymeric beams into graphitic carbon hollow tube-in-tube sandwich morphologies, where, similar to grass stems, the inner and outer tubes are connected through a network of struts. Compression tests and computational modelling show that this change in beam morphology dramatically slows down the decrease in stiffness with decreasing density. In situ pillar compression experiments further demonstrate large deformation recovery after 30-50% compression and high specific damping merit index. Our strutted tube-in-tube design opens up the space and realizes highly desirable high modulus-low density and high modulus-high damping material structures

    ALD Functionalized Nanoporous Gold: Thermal Stability, Mechanical Properties, and Catalytic Activity

    Get PDF
    Nanoporous metals have many technologically promising applications but their tendency to coarsen limits their long-term stability and excludes high temperature applications. Here, we demonstrate that atomic layer deposition (ALD) can be used to stabilize and functionalize nanoporous metals. Specifically, we studied the effect of nanometer-thick alumina and titania ALD films on thermal stability, mechanical properties, and catalytic activity of nanoporous gold (np-Au). Our results demonstrate that even only one-nm-thick oxide films can stabilize the nanoscale morphology of np-Au up to 1000 C, while simultaneously making the material stronger and stiffer. The catalytic activity of np-Au can be drastically increased by TiO{sub 2} ALD coatings. Our results open the door to high temperature sensor, actuator, and catalysis applications and functionalized electrodes for energy storage and harvesting applications

    Virtual Special Issue on Catalysis at the U.S. Department of Energy’s National Laboratories

    Get PDF
    Catalysis research at the U.S. Department of Energy’s (DOE’s) National Laboratories covers a wide range of research topics in heterogeneous catalysis, homogeneous/molecular catalysis, biocatalysis, electrocatalysis, and surface science. Since much of the work at National Laboratories is funded by DOE, the research is largely focused on addressing DOE’s mission to ensure America’s security and prosperity by addressing its energy, environmental, and nuclear challenges through transformative science and technology solutions. The catalysis research carried out at the DOE National Laboratories ranges from very fundamental catalysis science, funded by DOE’s Office of Basic Energy Sciences (BES), to applied research and development (R&D) in areas such as biomass conversion to fuels and chemicals, fuel cells, and vehicle emission control with primary funding from DOE’s Office of Energy Efficiency and Renewable Energy. National Laboratories are home to many DOE Office of Science national scientific user facilities that provide researchers with the most advanced tools of modern science, including accelerators, colliders, supercomputers, light sources, and neutron sources, as well as facilities for studying the nanoworld and the terrestrial environment. National Laboratory research programs typically feature teams of researchers working closely together, often joining scientists from different disciplines to tackle scientific and technical problems using a variety of tools and techniques available at the DOE national scientific user facilities. Along with collaboration between National Laboratory scientists, interactions with university colleagues are common in National Laboratory catalysis R&D. In some cases, scientists have joint appointments at a university and a National Laboratory. This ACS Catalysis Virtual Special Issue {http://pubs.acs.org/page/accacs/vi/doe-national-labs} was motivated by Christopher Jones and Rhea Williams, who sent out the invitations to all of DOE’s National Laboratories where catalysis research is conducted. All manuscripts submitted went through the standard rigorous peer review required for publication in ACS Catalysis. A total of 29 papers are published in this virtual special issue, which features some of the recent catalysis research at 11 of DOE’s National Laboratories: Ames Laboratory (Ames), Argonne National Laboratory (ANL), Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), Lawrence Livermore National Laboratory (LLNL), National Energy Technology Laboratory (NETL), National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), Sandia National Laboratory (SNL), and SLAC National Accelerator Laboratory (SLAC). In this preface, we briefly discuss the history and impact of catalysis research at these particular DOE National Laboratories, where the majority of catalysis research continues to be conducted
    • …
    corecore