9 research outputs found

    Monitoring Dermal Penetration and Permeation Kinetics of Topical Products; the Role of Raman Microspectroscopy

    Get PDF
    The study of human skin represents an important area of research and development in dermatology, toxicology, pharmacology and cosmetology, in order to assess the effects of exogenous agents, their interaction, their absorption mechanism, and/or their toxicity towards the different cutaneous structures. The processes can be parameterised by mathematical models of diffusion, of varying degrees of complexity, and are commonly measured by Franz cell diffusion, in vitro, and tape stripping, in vitro or in vivo, techniques which are recognised by regulatory bodies for commercialisation of dermally applied products. These techniques do not directly provide chemically specific measurement of the penetration and/or permeation of formulations in situ, however. Raman microspectroscopy provides a non-destructive, non-invasive and chemically specific methodology for in vitro, and in vivo investigations, in-situ, and can provide a powerful alternative to the current gold standard methods approved by regulatory bodies. This review provides an analysis of the current state of art of the field of monitoring dermal penetration and permeation kinetics of topical products, in vitro and in vivo, as well as the regulatory requirements of international guidelines governing them. It furthermore outlines developments in the analysis of skin using Raman microspectroscopy, towards the most recent demonstrations of quantitative monitoring of the penetration and permeation kinetics of topical products in situ, for in vitro and in vivo applications, before discussing the challenges and future perspectives of the field

    Improvement of Human Epidermal Barrier Structure and Lipid Profile in Xerotic- and Atopic-Prone Skin via Application of a Plant-Oil and Urea Containing pH 4.5 Emulsion

    No full text
    Epidermal barrier dysfunction can lead to xerotic skin and promote skin disorders like atopic dermatitis. Atopic skin is characterized by reduced water-retaining compounds, altered lipid composition and elevated skin pH. Against this background, a study was conducted to investigate the impact of a specific skin care product on epidermal barrier function in dry and atopic-prone skin. A marketed pH 4.5 cosmetic formulation containing 10% urea and specific plant oils was evaluated on 25 subjects with dry and atopic-prone skin. Measurements of skin hydration, pH, and barrier function were performed before and after 3 weeks of product usage. Additionally, visual scoring and stratum corneum lipid analysis using electron microscopy were conducted to investigate lipid composition. An improved skin hydration compared to the untreated area and a tendency to decrease the baseline elevated skin surface pH were observed. The visual scoring showed reduced dryness, roughness, and tension through the application. Furthermore, the stratum corneum lipid matrix was improved in terms of lipid content and organization. The combination of an acidic product’s pH, a relevant urea content and effective plant oils is shown to be beneficial in terms of improving the skin barrier function, structure and appearance and is recommended for dry and atopic-prone skin

    Biophysical and Subject-Based Assessment of the Effects of Topical Moisturizer Usage on Xerotic Skin—Part I: Epsilon<sup>TM</sup> 2D Skin Hydration

    No full text
    As new biophysical methods become available to the skin researcher, it is important to understand the type of information that they are capable of measuring, and how it relates to consumer perception of topical moisturizing products. This work was aimed at understanding how two-dimensional (2D) skin hydration mapping can be used to describe skin properties beyond the traditional ‘single number’ approach to skin hydration. Two-dimensional skin hydration measurement data were collected at baseline and after 1 week of in vivo usage of a topical moisturizing product. In addition, subject feedback regarding their skin condition obtained during the study was collected and assessed. Dividing the 2D hydration measurement device images into zones of different electrical permittivity scores enabled analysis of different aspects of the skin compared with traditional electrical skin hydration measurements. Improvement in skin flexibility as a result of use of the topical test product was demonstrated. Complete description of the skin’s hydration state through the creation of hydration histograms to describe its electrical characteristics was performed. Subject feedback data showed improvements in aspects of skin assessed using 2D hydration measurement

    New methods for assessing secondary performance attributes of sunscreens suitable for professional outdoor work

    No full text
    Abstract Background Outdoor workers (OW) are highly exposed to solar ultraviolet radiation (UVR) and thus at increased risk for developing skin cancer. An essential part of an overall strategy to reduce workplace UVR-exposure to OW’s skin is the usage of sunscreens. However, compliance with regular sunscreen usage seems to be low, as products are usually designed for recreational sun exposure and thus do not meet the requirements of physically active OW. To date, no standardized test procedures assess the suitability of sunscreens for professional use. The aim of this pilot study was to develop standardized methods of testing secondary performance attributes (PA) to represent real-life working conditions of outdoor work. Methods Ten sunscreen products, carefully selected after a detailed market survey of all relevant producers available on the German market, were evaluated regarding their suitability for professional outdoor work on 24 healthy volunteers in a newly designed test procedure. In addition to three standardized efficacy characteristics, i.e., sun protection factor, water-resistance, and UVA protection, we evaluated each PA involving parameters typically associated with outdoor workplaces. Results We developed standardized methods for objectifying the suitability of sunscreen products for professional outdoor work. The test procedures used are well feasible and appropriate for testing the PA because they represent practical working conditions in detail – although the degree of discriminability of single test methods varied. The claimed sun protection factor (SPF) of the products was confirmed; bio-stability of the SPF after physical activity was achieved in most cases. While most products hardly irritate the eyes and are quickly absorbed, the evaluation of the subjective skin feeling and non-slip grip is inconsistent. Conclusions In this pilot study, for the first time secondary PA are defined and examined. Although further objectification of the PA assessment as well as the establishment of minimum standards should be sought, the new methods could already complement the so far mandatory labels and in this way provide a significant impetus for the current scientific and political focus on the improvement of occupational health in highly UVR-exposed OW

    Biophysical and Subject-Based Assessment of the Effects of Topical Moisturizer Usage on Xerotic Skin—Part II: Visioscan<sup>®</sup> VC 20plus Imaging

    No full text
    As new biophysical methods become available to the skin researcher it is important to understand the type of information that they are capable of measuring, and how it relates to consumer perception of topical moisturizing products. The aim of the work presented here was to understand what dry skin imaging can reveal about the skin and subject feedback from the use of a topical moisturizing product and how it relates to the consumer usage experience of a topical product. Images from a dry skin camera—the Visioscan® VC 20plus—during 3 weeks in vivo usage of a topical moisturizing product were analyzed. Subject feedback regarding their skin condition was also collected. Strong statistical improvements (p ® VC 20plus. Skin scaliness and smoothness and parameters associated with skin health and appearance (surface, energy, contrast, homogeneity) improved as a result of topical product usage. Subjects reported their skin to feel less dry, to be smoother, and more supple and to look and feel healthier after product usage. The length of time until they felt the need to re-apply the product increased during the study

    Biophysical and Subject-Based Assessment of the Effects of Topical Moisturizer Usage on Xerotic Skin&mdash;Part II: Visioscan&reg; VC 20plus Imaging

    No full text
    As new biophysical methods become available to the skin researcher it is important to understand the type of information that they are capable of measuring, and how it relates to consumer perception of topical moisturizing products. The aim of the work presented here was to understand what dry skin imaging can reveal about the skin and subject feedback from the use of a topical moisturizing product and how it relates to the consumer usage experience of a topical product. Images from a dry skin camera&mdash;the Visioscan&reg; VC 20plus&mdash;during 3 weeks in vivo usage of a topical moisturizing product were analyzed. Subject feedback regarding their skin condition was also collected. Strong statistical improvements (p &lt; 0.05) were observed for a wide range of skin parameters derived from the Visioscan&reg; VC 20plus. Skin scaliness and smoothness and parameters associated with skin health and appearance (surface, energy, contrast, homogeneity) improved as a result of topical product usage. Subjects reported their skin to feel less dry, to be smoother, and more supple and to look and feel healthier after product usage. The length of time until they felt the need to re-apply the product increased during the study

    Biophysical and Subject-Based Assessment of the Effects of Topical Moisturizer Usage on Xerotic Skin&mdash;Part I: EpsilonTM 2D Skin Hydration

    No full text
    As new biophysical methods become available to the skin researcher, it is important to understand the type of information that they are capable of measuring, and how it relates to consumer perception of topical moisturizing products. This work was aimed at understanding how two-dimensional (2D) skin hydration mapping can be used to describe skin properties beyond the traditional &lsquo;single number&rsquo; approach to skin hydration. Two-dimensional skin hydration measurement data were collected at baseline and after 1 week of in vivo usage of a topical moisturizing product. In addition, subject feedback regarding their skin condition obtained during the study was collected and assessed. Dividing the 2D hydration measurement device images into zones of different electrical permittivity scores enabled analysis of different aspects of the skin compared with traditional electrical skin hydration measurements. Improvement in skin flexibility as a result of use of the topical test product was demonstrated. Complete description of the skin&rsquo;s hydration state through the creation of hydration histograms to describe its electrical characteristics was performed. Subject feedback data showed improvements in aspects of skin assessed using 2D hydration measurement

    A new topical panthenol-containing emollient: skin-moisturizing effect following single and prolonged usage in healthy adults, and tolerability in healthy infants

    No full text
    Purpose: Two studies were conducted with a new topical panthenol-containing emollient (NTP-CE) to investigate the skin-moisturizing effect in healthy adults and tolerability in healthy infants. Methods: In Study 1 (N = 44), a single skin application of NTP-CE was performed followed by a 4-week twice-daily application. Skin hydration and stratum corneum (SC) water content change (using Raman spectroscopy) were measured. In the 4-week Study 2 (N = 65, aged 3–25 months), NTP-CE tolerability was assessed using a 5-point scoring system; skin hydration was determined in a subset (N = 21). Results: In Study 1, mean AUC0 − 24 h for skin capacitance change from baseline was 302.03 i.u. with NTP-CE and −15.90 i.u. in control areas (p < .001). With NTP-CE (at 4 h), the water content within the upper SC part was reduced (−45.10 vs. −13.39 g/cm2, p = .013) and the water gradient increased (0.51 vs. 0.11 g/cm4, p = .036), indicating relocation of water into deeper layers. In Study 2, there was no statistically significant change from baseline in mean cutaneous tolerability scores. At days 7, 14, and 28, skin hydration had increased by 42%, 54%, and 49%, respectively (all p < .001). Conclusions: Single and prolonged NTP-CE usage is associated with sustained and deep skin moisturization. NTP-CE is well tolerated by healthy infants

    A new topical panthenol-containing emollient: Results from two randomized controlled studies assessing its skin moisturization and barrier restoration potential, and the effect on skin microflora

    No full text
    Purpose: Two randomized, intra-individual comparison studies were performed in healthy subjects to evaluate the skin moisturization and barrier restoration potential of a new topical panthenol-containing emollient (NTP-CE) (Study 1), and its effect on skin microflora (Study 2). Methods: In Study 1 (N = 23), two skin areas, one challenged with 0.5% sodium dodecyl sulfate (SDS) solution and one unchallenged, were treated with NTP-CE for 3 weeks. Transepidermal water loss (TEWL), skin hydration, and intercellular lipid lamellae (ICLL) organization were measured at regular intervals during the study. In Study 2 (N = 20), quantitative bacterial cultures were obtained over 6 h from a skin area undergoing wash stress with 10% SDS with subsequent single application of NTP-CE. Results: In Study 1, mean AUC for TEWL reduction from baseline was more pronounced with NTP-CE compared with control (−168.36 vs. −123.38 g/m2/h, p = 0.023). NTP-CE use was also associated with statistically significant improvements in stratum corneum hydration and an increase in mean ICLL length from baseline (day 22: 120.61 vs. 35.85 nm/1000 nm2, p < 0.001). In Study 2, NTP-CE use had no negative impact on bacterial viability. Conclusions: NTP-CE use has favorable and lasting effects on barrier function and repair as well as skin hydration without negatively influencing bacterial viability
    corecore