60 research outputs found
Molecular Details of Serum Resistance of Yersinia enterocolitica
In complement activation, Factor H (FH) and C4b-binding protein (C4bp) are the key regulators that prevent the complement cascade from attacking host tissues. Some bacteria may bind and deposit these regulators on their own surfaces and thus provide themselves with an efficient means to avoid complement activation. In consequence, bacteria resist complement-mediated lysis and opsonin-dependent phagocytosis. This study has demonstrated that Y. enterocolitica, similar to many other pathogens, recruits both FH and C4bp to its surface to ensure protection against the complement-mediated killing. YadA and Ail, the most crucial serum resistance factors of Y.enterocolitica, mediate the binding of FH and C4bp. FH - YadA interaction involves multiple higher structural motifs on the YadA stalk and the short consensus repeats (SCRs) of the entire polypeptide chain of FH. The Ail binding site on FH has been located to SCRs 6 and 7. The binding site for FH on Ail, however, remains undetermined. Both YadA- and Ail-bound regulators display full cofactor activity for FI-mediated cleavage of C3b/C4b. FH/C4bp-binding characteristics do, however, differ between YadA and Ail. In addition, Ail captures the regulators only in the absence of blocking lipopolysaccharide O-antigen and outer core, whereas YadA binds FH/C4bp independent of the presence of other surface factors Independent of mode of binding, however, YadA and Ail provide Y. enterocolitica a means to avoid complement-mediated lysis, enhancing chances for the bacteria to survive in the host during various phases of infection.Human beings provide a home for a myriad of microbes. Many microbes produce vitamins and nutrients, ferment food, break down toxic chemicals, and protect us from pathogenic microbes which we encounter every day. The latter, however, often find ways to cause infection, exploiting a wide range of strategies to penetrate physical barriers such as skin or mucous membranes and to survive and persist in the host. The first obstacle they must combat is the action of the non-specific innate immune system. One of its essential arms is the complement system, the first line of defense activated immediately upon pathogen entry. The importance of the complement system in host defense against invading pathogens is reflected by increased susceptibility to microbial infection of individuals deficient in certain complement components. Complement is bactericidal against Gram-negative bacteria, it acts as an opsonin, and its cleavage products contribute to induction of inflammation. That pathogens adapt quickly to environmental changes makes them tenacious opponents. They express surface factors to manipulate the host complement system and avoid complement-mediated recognition and eradication. This study has demonstrated that an enteropathogic bacterium Y. enterocolitica binds host complement regulators to avoid complement-mediated lysis, enhancing chances for the bacteria to survive in the host during various phases of infection
Ail provides multiple mechanisms of serum resistance to Yersinia pestis
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147847/1/mmi14140_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147847/2/mmi14140.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/147847/3/mmi14140-sup-0001-Supinfo.pd
Yersinia pestis targets neutrophils via complement receptor 3
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111208/1/cmi12391.pd
Yersinia enterocolitica Serum Resistance Proteins YadA and Ail Bind the Complement Regulator C4b-Binding Protein
Many pathogens are equipped with factors providing resistance against the bactericidal action of complement. Yersinia enterocolitica, a Gram-negative enteric pathogen with invasive properties, efficiently resists the deleterious action of human complement. The major Y. enterocolitica serum resistance determinants include outer membrane proteins YadA and Ail. Lipopolysaccharide (LPS) O-antigen (O-ag) and outer core (OC) do not contribute directly to complement resistance. The aim of this study was to analyze a possible mechanism whereby Y. enterocolitica could inhibit the antibody-mediated classical pathway of complement activation. We show that Y. enterocolitica serotypes O:3, O:8, and O:9 bind C4b-binding protein (C4bp), an inhibitor of both the classical and lectin pathways of complement. To identify the C4bp receptors on Y. enterocolitica serotype O:3 surface, a set of mutants expressing YadA, Ail, O-ag, and OC in different combinations was tested for the ability to bind C4bp. The studies showed that both YadA and Ail acted as C4bp receptors. Ail-mediated C4bp binding, however, was blocked by the O-ag and OC, and could be observed only with mutants lacking these LPS structures. C4bp bound to Y. enterocolitica was functionally active and participated in the factor I-mediated degradation of C4b. These findings show that Y. enterocolitica uses two proteins, YadA and Ail, to bind C4bp. Binding of C4bp could help Y. enterocolitica to evade complement-mediated clearance in the human host
The structure of E. coli IgG-binding protein D suggests a general model for bending and binding in trimeric autotransporter adhesins
The Escherichia coli Ig-binding (Eib) proteins are trimeric autotransporter adhesins (TAAs) and receptors for IgG Fc. We present the structure of a large fragment of the passenger domain of EibD, the first TAA structure to have both a YadA-like head domain and the entire coiled-coil stalk. The stalk begins as a right-handed superhelix, but switches handedness halfway down. An unexpected ÎČ-minidomain joins the two and inserts a âŒ120° rotation such that there is no net twist between the beginning and end of the stalk. This may be important in folding and autotransport. The surprisingly large cavities we found in EibD and other TAAs may explain how TAAs bend to bind their ligands. We identified how IgA and IgG bind and modeled the EibD-IgG Fc complex. We further show that EibD promotes autoagglutination and biofilm formation and forms a fibrillar layer covering the cell surface making zipper-like contacts between cells
The Meningococcal Vaccine Candidate Neisserial Surface Protein A (NspA) Binds to Factor H and Enhances Meningococcal Resistance to Complement
Complement forms an important arm of innate immunity against invasive meningococcal infections. Binding of the alternative complement pathway inhibitor factor H (fH) to fH-binding protein (fHbp) is one mechanism meningococci employ to limit complement activation on the bacterial surface. fHbp is a leading vaccine candidate against group B Neisseria meningitidis. Novel mechanisms that meningococci employ to bind fH could undermine the efficacy of fHbp-based vaccines. We observed that fHbp deletion mutants of some meningococcal strains showed residual fH binding suggesting the presence of a second receptor for fH. Ligand overlay immunoblotting using membrane fractions from one such strain showed that fH bound to a âŒ17 kD protein, identified by MALDI-TOF analysis as Neisserial surface protein A (NspA), a meningococcal vaccine candidate whose function has not been defined. Deleting nspA, in the background of fHbp deletion mutants, abrogated fH binding and mAbs against NspA blocked fH binding, confirming NspA as a fH binding molecule on intact bacteria. NspA expression levels vary among strains and expression correlated with the level of fH binding; over-expressing NspA enhanced fH binding to bacteria. Progressive truncation of the heptose (Hep) I chain of lipooligosaccharide (LOS), or sialylation of lacto-N-neotetraose LOS both increased fH binding to NspA-expressing meningococci, while expression of capsule reduced fH binding to the strains tested. Similar to fHbp, binding of NspA to fH was human-specific and occurred through fH domains 6â7. Consistent with its ability to bind fH, deleting NspA increased C3 deposition and resulted in increased complement-dependent killing. Collectively, these data identify a key complement evasion mechanism with important implications for ongoing efforts to develop meningococcal vaccines that employ fHbp as one of its components
Yersinia adhesins: an arsenal for infection
The Yersiniae are a group of Gram-negative coccobacilli inhabiting a wide range of habitats. The genus harbours three recognised human pathogens: Y. enterocolitica and Y. pseudotuberculosis, which both cause gastrointestinal disease, and Y. pestis, the causative agent of plague. These three organisms have served as models for a number of aspects of infection biology, including adhesion, immune evasion, evolution of pathogenic traits, and retracing the course of ancient pandemics. The virulence of the pathogenic Yersiniae is heavily dependent on a number of adhesin molecules. Some of these, such as the Yersinia adhesin A and invasin of the enteropathogenic species, and the pH 6 antigen of Y. pestis, have been extensively studied. However, genomic sequencing has uncovered a host of other adhesins present in these organisms, the functions of which are only starting to be investigated. Here, we review the current state of knowledge on the adhesin molecules present in the Yersiniae, their functions and putative roles in the infection process
Role of YadA, Ail, and Lipopolysaccharide in Serum Resistance of Yersinia enterocolitica Serotype O:3
Complement attack is a host strategy leading to elimination of pathogens. Yersinia enterocolitica expresses several potential complement resistance factors: the outer membrane proteins YadA and Ail as well as lipopolysaccharide (LPS). To study the contribution of these factors to the survival of Y. enterocolitica serotype O:3 in nonimmune human serum, we constructed 23 mutant strains of Y. enterocolitica O:3 expressing different combinations of YadA, Ail, LPS O antigen, and LPS outer core. Survival of bacteria was analyzed in normal serum (with functional classical, lectin, and alternative complement activation pathways) and EGTA-Mg-treated serum (only alternative pathway functional). Kinetic killing tests revealed that the most potent single-serum resistance factor needed for long-term survival was YadA; Ail was also indispensable, but it provided short-term survival and delayed the bacterial killing. On the contrary, the LPS O antigen and outer core, when in combination with YadA, Ail, or both, had a minor and often negative effect on serum resistance. Bacteria in the exponential phase of growth were more resistant to serum killing than stationary-phase bacteria. After exposing bacteria to EGTA-Mg-treated serum, O antigen could prevent deposition of covalently bound C3b on bacteria at 3 min of incubation, even as a single factor. At later time points (15 and 30 min) it had to be accompanied by YadA, Ail, and outer core. In normal serum, the bacteria were less resistant to C3b deposition. However, no direct correlation between the C3 deposition pattern and bacterial resistance was observed
- âŠ