229 research outputs found
Knuthian Drawings of Series-Parallel Flowcharts
Inspired by a classic paper by Knuth, we revisit the problem of drawing
flowcharts of loop-free algorithms, that is, degree-three series-parallel
digraphs. Our drawing algorithms show that it is possible to produce Knuthian
drawings of degree-three series-parallel digraphs with good aspect ratios and
small numbers of edge bends.Comment: Full versio
Locked and Unlocked Polygonal Chains in 3D
In this paper, we study movements of simple polygonal chains in 3D. We say
that an open, simple polygonal chain can be straightened if it can be
continuously reconfigured to a straight sequence of segments in such a manner
that both the length of each link and the simplicity of the chain are
maintained throughout the movement. The analogous concept for closed chains is
convexification: reconfiguration to a planar convex polygon. Chains that cannot
be straightened or convexified are called locked. While there are open chains
in 3D that are locked, we show that if an open chain has a simple orthogonal
projection onto some plane, it can be straightened. For closed chains, we show
that there are unknotted but locked closed chains, and we provide an algorithm
for convexifying a planar simple polygon in 3D with a polynomial number of
moves.Comment: To appear in Proc. 10th ACM-SIAM Sympos. Discrete Algorithms, Jan.
199
EPG-representations with small grid-size
In an EPG-representation of a graph each vertex is represented by a path
in the rectangular grid, and is an edge in if and only if the paths
representing an share a grid-edge. Requiring paths representing edges
to be x-monotone or, even stronger, both x- and y-monotone gives rise to three
natural variants of EPG-representations, one where edges have no monotonicity
requirements and two with the aforementioned monotonicity requirements. The
focus of this paper is understanding how small a grid can be achieved for such
EPG-representations with respect to various graph parameters.
We show that there are -edge graphs that require a grid of area
in any variant of EPG-representations. Similarly there are
pathwidth- graphs that require height and area in
any variant of EPG-representations. We prove a matching upper bound of
area for all pathwidth- graphs in the strongest model, the one where edges
are required to be both x- and y-monotone. Thus in this strongest model, the
result implies, for example, , and area bounds
for bounded pathwidth graphs, bounded treewidth graphs and all classes of
graphs that exclude a fixed minor, respectively. For the model with no
restrictions on the monotonicity of the edges, stronger results can be achieved
for some graph classes, for example an area bound for bounded treewidth
graphs and bound for graphs of bounded genus.Comment: Appears in the Proceedings of the 25th International Symposium on
Graph Drawing and Network Visualization (GD 2017
On Upward Drawings of Trees on a Given Grid
Computing a minimum-area planar straight-line drawing of a graph is known to
be NP-hard for planar graphs, even when restricted to outerplanar graphs.
However, the complexity question is open for trees. Only a few hardness results
are known for straight-line drawings of trees under various restrictions such
as edge length or slope constraints. On the other hand, there exist
polynomial-time algorithms for computing minimum-width (resp., minimum-height)
upward drawings of trees, where the height (resp., width) is unbounded.
In this paper we take a major step in understanding the complexity of the
area minimization problem for strictly-upward drawings of trees, which is one
of the most common styles for drawing rooted trees. We prove that given a
rooted tree and a grid, it is NP-hard to decide whether
admits a strictly-upward (unordered) drawing in the given grid.Comment: Appears in the Proceedings of the 25th International Symposium on
Graph Drawing and Network Visualization (GD 2017
L-Drawings of Directed Graphs
We introduce L-drawings, a novel paradigm for representing directed graphs
aiming at combining the readability features of orthogonal drawings with the
expressive power of matrix representations. In an L-drawing, vertices have
exclusive - and -coordinates and edges consist of two segments, one
exiting the source vertically and one entering the destination horizontally.
We study the problem of computing L-drawings using minimum ink. We prove its
NP-completeness and provide a heuristics based on a polynomial-time algorithm
that adds a vertex to a drawing using the minimum additional ink. We performed
an experimental analysis of the heuristics which confirms its effectiveness.Comment: 11 pages, 7 figure
Pixel and Voxel Representations of Graphs
We study contact representations for graphs, which we call pixel
representations in 2D and voxel representations in 3D. Our representations are
based on the unit square grid whose cells we call pixels in 2D and voxels in
3D. Two pixels are adjacent if they share an edge, two voxels if they share a
face. We call a connected set of pixels or voxels a blob. Given a graph, we
represent its vertices by disjoint blobs such that two blobs contain adjacent
pixels or voxels if and only if the corresponding vertices are adjacent. We are
interested in the size of a representation, which is the number of pixels or
voxels it consists of.
We first show that finding minimum-size representations is NP-complete. Then,
we bound representation sizes needed for certain graph classes. In 2D, we show
that, for -outerplanar graphs with vertices, pixels are
always sufficient and sometimes necessary. In particular, outerplanar graphs
can be represented with a linear number of pixels, whereas general planar
graphs sometimes need a quadratic number. In 3D, voxels are
always sufficient and sometimes necessary for any -vertex graph. We improve
this bound to for graphs of treewidth and to
for graphs of genus . In particular, planar graphs
admit representations with voxels
Planar Octilinear Drawings with One Bend Per Edge
In octilinear drawings of planar graphs, every edge is drawn as an
alternating sequence of horizontal, vertical and diagonal ()
line-segments. In this paper, we study octilinear drawings of low edge
complexity, i.e., with few bends per edge. A -planar graph is a planar graph
in which each vertex has degree less or equal to . In particular, we prove
that every 4-planar graph admits a planar octilinear drawing with at most one
bend per edge on an integer grid of size . For 5-planar
graphs, we prove that one bend per edge still suffices in order to construct
planar octilinear drawings, but in super-polynomial area. However, for 6-planar
graphs we give a class of graphs whose planar octilinear drawings require at
least two bends per edge
Lombardi Drawings of Graphs
We introduce the notion of Lombardi graph drawings, named after the American
abstract artist Mark Lombardi. In these drawings, edges are represented as
circular arcs rather than as line segments or polylines, and the vertices have
perfect angular resolution: the edges are equally spaced around each vertex. We
describe algorithms for finding Lombardi drawings of regular graphs, graphs of
bounded degeneracy, and certain families of planar graphs.Comment: Expanded version of paper appearing in the 18th International
Symposium on Graph Drawing (GD 2010). 13 pages, 7 figure
Upward Planar Morphs
We prove that, given two topologically-equivalent upward planar straight-line
drawings of an -vertex directed graph , there always exists a morph
between them such that all the intermediate drawings of the morph are upward
planar and straight-line. Such a morph consists of morphing steps if
is a reduced planar -graph, morphing steps if is a planar
-graph, morphing steps if is a reduced upward planar graph, and
morphing steps if is a general upward planar graph. Further, we
show that morphing steps might be necessary for an upward planar
morph between two topologically-equivalent upward planar straight-line drawings
of an -vertex path.Comment: Appears in the Proceedings of the 26th International Symposium on
Graph Drawing and Network Visualization (GD 2018) The current version is the
extended on
Locked and Unlocked Polygonal Chains in Three Dimensions
This paper studies movements of polygonal chains in three dimensions whose links are not allowed to cross or change length. Our main result is an algorithmic proof that any simple closed chain that initially takes the form of a planar polygon can be made convex in three dimensions. Other results include an algorithm for straightening open chains having a simple orthogonal projection onto some plane, and an algorithm for making convex any open chain initially configured on the surface of a polytope. All our algorithms require only O (n) basic moves.
- …