229 research outputs found

    Knuthian Drawings of Series-Parallel Flowcharts

    Full text link
    Inspired by a classic paper by Knuth, we revisit the problem of drawing flowcharts of loop-free algorithms, that is, degree-three series-parallel digraphs. Our drawing algorithms show that it is possible to produce Knuthian drawings of degree-three series-parallel digraphs with good aspect ratios and small numbers of edge bends.Comment: Full versio

    Locked and Unlocked Polygonal Chains in 3D

    Get PDF
    In this paper, we study movements of simple polygonal chains in 3D. We say that an open, simple polygonal chain can be straightened if it can be continuously reconfigured to a straight sequence of segments in such a manner that both the length of each link and the simplicity of the chain are maintained throughout the movement. The analogous concept for closed chains is convexification: reconfiguration to a planar convex polygon. Chains that cannot be straightened or convexified are called locked. While there are open chains in 3D that are locked, we show that if an open chain has a simple orthogonal projection onto some plane, it can be straightened. For closed chains, we show that there are unknotted but locked closed chains, and we provide an algorithm for convexifying a planar simple polygon in 3D with a polynomial number of moves.Comment: To appear in Proc. 10th ACM-SIAM Sympos. Discrete Algorithms, Jan. 199

    EPG-representations with small grid-size

    Full text link
    In an EPG-representation of a graph GG each vertex is represented by a path in the rectangular grid, and (v,w)(v,w) is an edge in GG if and only if the paths representing vv an ww share a grid-edge. Requiring paths representing edges to be x-monotone or, even stronger, both x- and y-monotone gives rise to three natural variants of EPG-representations, one where edges have no monotonicity requirements and two with the aforementioned monotonicity requirements. The focus of this paper is understanding how small a grid can be achieved for such EPG-representations with respect to various graph parameters. We show that there are mm-edge graphs that require a grid of area Ω(m)\Omega(m) in any variant of EPG-representations. Similarly there are pathwidth-kk graphs that require height Ω(k)\Omega(k) and area Ω(kn)\Omega(kn) in any variant of EPG-representations. We prove a matching upper bound of O(kn)O(kn) area for all pathwidth-kk graphs in the strongest model, the one where edges are required to be both x- and y-monotone. Thus in this strongest model, the result implies, for example, O(n)O(n), O(nlogn)O(n \log n) and O(n3/2)O(n^{3/2}) area bounds for bounded pathwidth graphs, bounded treewidth graphs and all classes of graphs that exclude a fixed minor, respectively. For the model with no restrictions on the monotonicity of the edges, stronger results can be achieved for some graph classes, for example an O(n)O(n) area bound for bounded treewidth graphs and O(nlog2n)O(n \log^2 n) bound for graphs of bounded genus.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    On Upward Drawings of Trees on a Given Grid

    Full text link
    Computing a minimum-area planar straight-line drawing of a graph is known to be NP-hard for planar graphs, even when restricted to outerplanar graphs. However, the complexity question is open for trees. Only a few hardness results are known for straight-line drawings of trees under various restrictions such as edge length or slope constraints. On the other hand, there exist polynomial-time algorithms for computing minimum-width (resp., minimum-height) upward drawings of trees, where the height (resp., width) is unbounded. In this paper we take a major step in understanding the complexity of the area minimization problem for strictly-upward drawings of trees, which is one of the most common styles for drawing rooted trees. We prove that given a rooted tree TT and a W×HW\times H grid, it is NP-hard to decide whether TT admits a strictly-upward (unordered) drawing in the given grid.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    L-Drawings of Directed Graphs

    Full text link
    We introduce L-drawings, a novel paradigm for representing directed graphs aiming at combining the readability features of orthogonal drawings with the expressive power of matrix representations. In an L-drawing, vertices have exclusive xx- and yy-coordinates and edges consist of two segments, one exiting the source vertically and one entering the destination horizontally. We study the problem of computing L-drawings using minimum ink. We prove its NP-completeness and provide a heuristics based on a polynomial-time algorithm that adds a vertex to a drawing using the minimum additional ink. We performed an experimental analysis of the heuristics which confirms its effectiveness.Comment: 11 pages, 7 figure

    Pixel and Voxel Representations of Graphs

    Full text link
    We study contact representations for graphs, which we call pixel representations in 2D and voxel representations in 3D. Our representations are based on the unit square grid whose cells we call pixels in 2D and voxels in 3D. Two pixels are adjacent if they share an edge, two voxels if they share a face. We call a connected set of pixels or voxels a blob. Given a graph, we represent its vertices by disjoint blobs such that two blobs contain adjacent pixels or voxels if and only if the corresponding vertices are adjacent. We are interested in the size of a representation, which is the number of pixels or voxels it consists of. We first show that finding minimum-size representations is NP-complete. Then, we bound representation sizes needed for certain graph classes. In 2D, we show that, for kk-outerplanar graphs with nn vertices, Θ(kn)\Theta(kn) pixels are always sufficient and sometimes necessary. In particular, outerplanar graphs can be represented with a linear number of pixels, whereas general planar graphs sometimes need a quadratic number. In 3D, Θ(n2)\Theta(n^2) voxels are always sufficient and sometimes necessary for any nn-vertex graph. We improve this bound to Θ(nτ)\Theta(n\cdot \tau) for graphs of treewidth τ\tau and to O((g+1)2nlog2n)O((g+1)^2n\log^2n) for graphs of genus gg. In particular, planar graphs admit representations with O(nlog2n)O(n\log^2n) voxels

    Planar Octilinear Drawings with One Bend Per Edge

    Get PDF
    In octilinear drawings of planar graphs, every edge is drawn as an alternating sequence of horizontal, vertical and diagonal (4545^\circ) line-segments. In this paper, we study octilinear drawings of low edge complexity, i.e., with few bends per edge. A kk-planar graph is a planar graph in which each vertex has degree less or equal to kk. In particular, we prove that every 4-planar graph admits a planar octilinear drawing with at most one bend per edge on an integer grid of size O(n2)×O(n)O(n^2) \times O(n). For 5-planar graphs, we prove that one bend per edge still suffices in order to construct planar octilinear drawings, but in super-polynomial area. However, for 6-planar graphs we give a class of graphs whose planar octilinear drawings require at least two bends per edge

    Lombardi Drawings of Graphs

    Full text link
    We introduce the notion of Lombardi graph drawings, named after the American abstract artist Mark Lombardi. In these drawings, edges are represented as circular arcs rather than as line segments or polylines, and the vertices have perfect angular resolution: the edges are equally spaced around each vertex. We describe algorithms for finding Lombardi drawings of regular graphs, graphs of bounded degeneracy, and certain families of planar graphs.Comment: Expanded version of paper appearing in the 18th International Symposium on Graph Drawing (GD 2010). 13 pages, 7 figure

    Upward Planar Morphs

    Full text link
    We prove that, given two topologically-equivalent upward planar straight-line drawings of an nn-vertex directed graph GG, there always exists a morph between them such that all the intermediate drawings of the morph are upward planar and straight-line. Such a morph consists of O(1)O(1) morphing steps if GG is a reduced planar stst-graph, O(n)O(n) morphing steps if GG is a planar stst-graph, O(n)O(n) morphing steps if GG is a reduced upward planar graph, and O(n2)O(n^2) morphing steps if GG is a general upward planar graph. Further, we show that Ω(n)\Omega(n) morphing steps might be necessary for an upward planar morph between two topologically-equivalent upward planar straight-line drawings of an nn-vertex path.Comment: Appears in the Proceedings of the 26th International Symposium on Graph Drawing and Network Visualization (GD 2018) The current version is the extended on

    Locked and Unlocked Polygonal Chains in Three Dimensions

    Get PDF
    This paper studies movements of polygonal chains in three dimensions whose links are not allowed to cross or change length. Our main result is an algorithmic proof that any simple closed chain that initially takes the form of a planar polygon can be made convex in three dimensions. Other results include an algorithm for straightening open chains having a simple orthogonal projection onto some plane, and an algorithm for making convex any open chain initially configured on the surface of a polytope. All our algorithms require only O (n) basic moves.
    corecore