25 research outputs found
Texture Segregation By Visual Cortex: Perceptual Grouping, Attention, and Learning
A neural model is proposed of how laminar interactions in the visual cortex may learn and recognize object texture and form boundaries. The model brings together five interacting processes: region-based texture classification, contour-based boundary grouping, surface filling-in, spatial attention, and object attention. The model shows how form boundaries can determine regions in which surface filling-in occurs; how surface filling-in interacts with spatial attention to generate a form-fitting distribution of spatial attention, or attentional shroud; how the strongest shroud can inhibit weaker shrouds; and how the winning shroud regulates learning of texture categories, and thus the allocation of object attention. The model can discriminate abutted textures with blurred boundaries and is sensitive to texture boundary attributes like discontinuities in orientation and texture flow curvature as well as to relative orientations of texture elements. The model quantitatively fits a large set of human psychophysical data on orientation-based textures. Object boundar output of the model is compared to computer vision algorithms using a set of human segmented photographic images. The model classifies textures and suppresses noise using a multiple scale oriented filterbank and a distributed Adaptive Resonance Theory (dART) classifier. The matched signal between the bottom-up texture inputs and top-down learned texture categories is utilized by oriented competitive and cooperative grouping processes to generate texture boundaries that control surface filling-in and spatial attention. Topdown modulatory attentional feedback from boundary and surface representations to early filtering stages results in enhanced texture boundaries and more efficient learning of texture within attended surface regions. Surface-based attention also provides a self-supervising training signal for learning new textures. Importance of the surface-based attentional feedback in texture learning and classification is tested using a set of textured images from the Brodatz micro-texture album. Benchmark studies vary from 95.1% to 98.6% with attention, and from 90.6% to 93.2% without attention.Air Force Office of Scientific Research (F49620-01-1-0397, F49620-01-1-0423); National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624
Data In, Data Out
Catalog for the exhibition Data In, Data Out held at the Seton Hall University Walsh Gallery, October 31 - December 16, 2011. Curated by Jeanne Brasile. Includes an essay by Jeanne Brasile. Includes color illustrations
The World Federation of ADHD International Consensus Statement:208 Evidence-based conclusions about the disorder
Background: Misconceptions about ADHD stigmatize affected people, reduce credibility of providers, and prevent/delay treatment. To challenge misconceptions, we curated findings with strong evidence base. Methods: We reviewed studies with more than 2000 participants or meta-analyses from five or more studies or 2000 or more participants. We excluded meta-analyses that did not assess publication bias, except for meta-analyses of prevalence. For network meta-analyses we required comparison adjusted funnel plots. We excluded treatment studies with waiting-list or treatment as usual controls. From this literature, we extracted evidence-based assertions about the disorder. Results: We generated 208 empirically supported statements about ADHD. The status of the included statements as empirically supported is approved by 80 authors from 27 countries and 6 continents. The contents of the manuscript are endorsed by 366 people who have read this document and agree with its contents. Conclusions: Many findings in ADHD are supported by meta-analysis. These allow for firm statements about the nature, course, outcome causes, and treatments for disorders that are useful for reducing misconceptions and stigma.</p