105 research outputs found
Conserving Soil and Water with Sustainable Cropping Systems
Abstract: Soils of the semiarid Canadian prairies have been subjected to substantial degradation since the native grasslands were first cultivated some 120 years ago. The degradation resulted from the combined effects of soil erosion, loss of soil organic matter (SOM), nutrient export by crops, and salinization. These soil damaging processes are the legacies of intensive tillage, monoculture cropping, and overuse of summerfallow. Long-and short-term crop rotation and soil management studies, conducted in southwest Saskatchewan, have shown the great benefits of reducing summerfallow frequency and intensity of mechanical tillage, and of using crop diversification to halt or reverse soil degradation. Nitrate leaching below the rooting depth (120 cm) after over years of continuous wheat (Triticum aestivum L.) cropping was lower than that in cropping systems that included summerfallow every 2 or 3 years. Inclusion of annual pulses, such as lentil (Lens culinaris Medikus), further reduced nitrate leaching, and increased wheat grain protein concentration in 2 of every 3 years compared to wheat monoculture grown annually. Furthermore, inclusion of the pulse crop in the rotation increased soil microbial biomass by 45% to 75%, and increased SOM by 1.8 Mg ha -1 as compared to wheat monoculture. Populations of rhizobia in the rhizosphere and rhizoplane of wheat roots were many thousand-to million-fold higher when grown in rotation with lentil than in monoculture. Shorter-term crop sequence studies have shown that the judicious selection of crop species and varieties arranged in appropriate sequences increases water and nutrient use efficiency by as much as 10% to 30%, decreases weed and disease pressure, and increases cereal grain yields by 5% to 15% and protein concentration by 6% to 16% at the systems level. Our research findings have assisted Canadian producers in identifying cropping systems that produce safe and nutritious food in an economically viable fashion, while conserving or enhancing soil and environmental quality
Multiwavelength study of the galactic PeVatron candidate LHAASO J2108+5157
Context. Several new ultrahigh-energy (UHE) γ-ray sources have recently been discovered by the Large High Altitude Air Shower Observatory (LHAASO) collaboration. These represent a step forward in the search for the so-called Galactic PeVatrons, the enigmatic sources of the Galactic cosmic rays up to PeV energies. However, it has been shown that multi-TeV γ-ray emission does not necessarily prove the existence of a hadronic accelerator in the source; indeed this emission could also be explained as inverse Compton scattering from electrons in a radiation-dominated environment. A clear distinction between the two major emission mechanisms would only be made possible by taking into account multi-wavelength data and detailed morphology of the source. Aims. We aim to understand the nature of the unidentified source LHAASO J2108+5157, which is one of the few known UHE sources with no very high-energy (VHE) counterpart. Methods. We observed LHAASO J2108+5157 in the X-ray band with XMM-Newton in 2021 for a total of 3.8 hours and at TeV energies with the Large-Sized Telescope prototype (LST-1), yielding 49 hours of good-quality data. In addition, we analyzed 12 years of Fermi-LAT data, to better constrain emission of its high-energy (HE) counterpart 4FGL J2108.0+5155. We used naima and jetset software packages to examine the leptonic and hadronic scenario of the multi-wavelength emission of the source. Results. We found an excess (3.7σ) in the LST-1 data at energies E > 3 TeV. Further analysis of the whole LST-1 energy range, assuming a point-like source, resulted in a hint (2.2σ) of hard emission, which can be described with a single power law with a photon index of Σ = 1.6 ± 0.2 the range of 0.3 - 100 TeV. We did not find any significant extended emission that could be related to a supernova remnant (SNR) or pulsar wind nebula (PWN) in the XMM-Newton data, which puts strong constraints on possible synchrotron emission of relativistic electrons. We revealed a new potential hard source in Fermi-LAT data with a significance of 4σ and a photon index of Σ = 1.9 ± 0.2, which is not spatially correlated with LHAASO J2108+5157, but including it in the source model we were able to improve spectral representation of the HE counterpart 4FGL J2108.0+5155. Conclusions. The LST-1 and LHAASO observations can be explained as inverse Compton-dominated leptonic emission of relativistic electrons with a cutoff energy of 100-30+70 TeV. The low magnetic field in the source imposed by the X-ray upper limits on synchrotron emission is compatible with a hypothesis of a PWN or a TeV halo. Furthermore, the spectral properties of the HE counterpart are consistent with a Geminga-like pulsar, which would be able to power the VHE-UHE emission. Nevertheless, the lack of a pulsar in the neighborhood of the UHE source is a challenge to the PWN/TeV-halo scenario. The UHE γ rays can also be explained as π0 decay-dominated hadronic emission due to interaction of relativistic protons with one of the two known molecular clouds in the direction of the source. Indeed, the hard spectrum in the LST-1 band is compatible with protons escaping a shock around a middle-aged SNR because of their high low-energy cut-off, but the origin of the HE γ-ray emission remains an open question
Observations of the Crab Nebula and Pulsar with the Large-sized Telescope Prototype of the Cherenkov Telescope Array
The Cherenkov Telescope Array (CTA) is a next-generation ground-based observatory for gamma-ray astronomy at very high energies. The Large-Sized Telescope prototype (LST-1) is located at the CTA-North site, on the Canary Island of La Palma. LSTs are designed to provide optimal performance in the lowest part of the energy range covered by CTA, down to ≃20 GeV. LST-1 started performing astronomical observations in 2019 November, during its commissioning phase, and it has been taking data ever since. We present the first LST-1 observations of the Crab Nebula, the standard candle of very-high-energy gamma-ray astronomy, and use them, together with simulations, to assess the performance of the telescope. LST-1 has reached the expected performance during its commissioning period—only a minor adjustment of the preexisting simulations was needed to match the telescope’s behavior. The energy threshold at trigger level is around 20 GeV, rising to ≃30 GeV after data analysis. Performance parameters depend strongly on energy, and on the strength of the gamma-ray selection cuts in the analysis: angular resolution ranges from 0.°12-0.°40, and energy resolution from 15%-50%. Flux sensitivity is around 1.1% of the Crab Nebula flux above 250 GeV for a 50 hr observation (12% for 30 minutes). The spectral energy distribution (in the 0.03-30 TeV range) and the light curve obtained for the Crab Nebula agree with previous measurements, considering statistical and systematic uncertainties. A clear periodic signal is also detected from the pulsar at the center of the Nebula
Southern African Large Telescope Spectroscopy of BL Lacs for the CTA project
In the last two decades, very-high-energy gamma-ray astronomy has reached maturity: over 200 sources have been detected, both Galactic and extragalactic, by ground-based experiments. At present, Active Galactic Nuclei (AGN) make up about 40% of the more than 200 sources detected at very high energies with ground-based telescopes, the majority of which are blazars, i.e. their jets are closely aligned with the line of sight to Earth and three quarters of which are classified as high-frequency peaked BL Lac objects. One challenge to studies of the cosmological evolution of BL Lacs is the difficulty of obtaining redshifts from their nearly featureless, continuum-dominated spectra. It is expected that a significant fraction of the AGN to be detected with the future Cherenkov Telescope Array (CTA) observatory will have no spectroscopic redshifts, compromising the reliability of BL Lac population studies, particularly of their cosmic evolution. We started an effort in 2019 to measure the redshifts of a large fraction of the AGN that are likely to be detected with CTA, using the Southern African Large Telescope (SALT). In this contribution, we present two results from an on-going SALT program focused on the determination of BL Lac object redshifts that will be relevant for the CTA observatory
Observations of the Crab Nebula and Pulsar with the Large-Sized Telescope Prototype of the Cherenkov Telescope Array
CTA (Cherenkov Telescope Array) is the next generation ground-based
observatory for gamma-ray astronomy at very-high energies. The Large-Sized
Telescope prototype (\LST{}) is located at the Northern site of CTA, on the
Canary Island of La Palma. LSTs are designed to provide optimal performance in
the lowest part of the energy range covered by CTA, down to GeV.
\LST{} started performing astronomical observations in November 2019, during
its commissioning phase, and it has been taking data since then. We present the
first \LST{} observations of the Crab Nebula, the standard candle of very-high
energy gamma-ray astronomy, and use them, together with simulations, to assess
the basic performance parameters of the telescope. The data sample consists of
around 36 hours of observations at low zenith angles collected between November
2020 and March 2022. \LST{} has reached the expected performance during its
commissioning period - only a minor adjustment of the preexisting simulations
was needed to match the telescope behavior. The energy threshold at trigger
level is estimated to be around 20 GeV, rising to GeV after data
analysis. Performance parameters depend strongly on energy, and on the strength
of the gamma-ray selection cuts in the analysis: angular resolution ranges from
0.12 to 0.40 degrees, and energy resolution from 15 to 50\%. Flux sensitivity
is around 1.1\% of the Crab Nebula flux above 250 GeV for a 50-h observation
(12\% for 30 minutes). The spectral energy distribution (in the 0.03 - 30 TeV
range) and the light curve obtained for the Crab Nebula agree with previous
measurements, considering statistical and systematic uncertainties. A clear
periodic signal is also detected from the pulsar at the center of the Nebula.Comment: Submitted to Ap
Performance of the joint LST-1 and MAGIC observations evaluated with Crab Nebula data
Aims. Large-Sized Telescope 1 (LST-1), the prototype for the Large-Sized Telescope at the upcoming Cherenkov Telescope Array Observatory, is concluding its commissioning phase at the Observatorio del Roque de los Muchachos on the island of La Palma. The proximity of LST-1 to the two MAGIC (Major Atmospheric Gamma Imaging Cherenkov) telescopes makes it possible to carry out observations of the same gamma-ray events with both systems. Methods. We describe the joint LST-1+MAGIC analysis pipeline and used simultaneous Crab Nebula observations and Monte Carlo simulations to assess the performance of the three-telescope system. The addition of the LST-1 telescope allows for the recovery of events in which one of the MAGIC images is too dim to survive analysis quality cuts. Results. Thanks to the resulting increase in the collection area and stronger background rejection, we found a significant improvement in sensitivity, allowing for the detection of 30% weaker fluxes in the energy range between 200 GeV and 3 TeV. The spectrum of the Crab Nebula, reconstructed in the energy range between ∼60 GeV and ∼10 TeV, is in agreement with previous measurements
Star tracking for pointing determination of Imaging Atmospheric Cherenkov Telescopes: Application to the Large-Sized Telescope of the Cherenkov Telescope Array
We present a novel approach to the determination of the pointing of Imaging Atmospheric Cherenkov Telescopes (IACTs) using the trajectories of the stars in their camera s field of view. The method starts with the reconstruction of the star positions from the Cherenkov camera data, taking into account the point spread function of the telescope, to achieve a satisfying reconstruction accuracy of the pointing position. A simultaneous fit of all reconstructed star trajectories is then performed with the orthogonal distance regression (ODR) method. ODR allows us to correctly include the star position uncertainties and use the time as an independent variable. Having the time as an independent variable in the fit makes it better suitable for various star trajectories. This method can be applied to any IACT and requires neither specific hardware nor interface or special data-taking mode. In this paper, we use the Large-Sized Telescope (LST) data to validate it as a useful tool to improve the determination of the pointing direction during regular data taking. The simulation studies show that the accuracy and precision of the method are comparable with the design requirements on the pointing accuracy of the LST (=14''). With the typical LST event acquisition rate of 10 kHz, the method can achieve up to 50 Hz pointing monitoring rate, compared to O(1) Hz achievable with standard techniques. The application of the method to the LST prototype (LST-1) commissioning data shows the stable pointing performance of the telescope
An intermittent extreme BL Lac: MWL study of 1ES 2344+514 in an enhanced state
Extreme high-frequency BL Lacs (EHBL) feature their synchrotron peak of the broad-band spectral energy distribution (SED) at nu(s) >= 10(17) Hz. The BL Lac object 1ES 2344+514 was included in the EHBL family because of its impressive shift of the synchrotron peak in 1996. During the following years, the source appeared to be in a low state without showing any extreme behaviours. In 2016 August, 1ES 2344+514 was detected with the groundbased gamma-ray telescope FACT during a high gamma-ray state, triggering multiwavelength (MWL) observations. We studied the MWL light curves of 1ES 2344+514 during the 2016 flaring state, using data from radio to very-high-energy (VHE) gamma-rays taken with OVRO, KAIT, KVA, NOT, some telescopes of the GASP-WEBT collaboration at the Teide, Crimean, and St. Petersburg observatories, Swift-UVOT, Swift-XRT, Fermi-LAT, FACT, and MAGIC. With simultaneous observations of the flare, we built the broad-band SED and studied it in the framework of a leptonic and a hadronic model. The VHE gamma-ray observations show a flux level of 55 per cent of the Crab Nebula flux above 300 GeV, similar to the historical maximum of 1995. The combination of MAGIC and Fermi-LAT spectra provides an unprecedented characterization of the inverse-Compton peak for this object during a flaring episode. The Gamma index of the intrinsic spectrum in the VHE gamma-ray band is 2.04 +/- 0.12(stat) +/- 0.15(sys). We find the source in an extreme state with a shift of the position of the synchrotron peak to frequencies above or equal to 1018 Hz
Investigation of the correlation patterns and the Compton dominance variability of Mrk 421 in 2017
Aims. We present a detailed characterisation and theoretical interpretation of the broadband emission of the paradigmatic TeV blazar Mrk 421, with a special focus on the multi-band flux correlations.Methods. The dataset has been collected through an extensive multi-wavelength campaign organised between 2016 December and 2017 June. The instruments involved are MAGIC, FACT, Fermi-LAT, Swift, GASP-WEBT, OVRO, Medicina, and Metsahovi. Additionally, four deep exposures (several hours long) with simultaneous MAGIC and NuSTAR observations allowed a precise measurement of the falling segments of the two spectral components.Results. The very-high-energy (VHE; E > 100 GeV) gamma rays and X-rays are positively correlated at zero time lag, but the strength and characteristics of the correlation change substantially across the various energy bands probed. The VHE versus X-ray fluxes follow different patterns, partly due to substantial changes in the Compton dominance for a few days without a simultaneous increase in the X-ray flux (i.e., orphan gamma-ray activity). Studying the broadband spectral energy distribution (SED) during the days including NuSTAR observations, we show that these changes can be explained within a one-zone leptonic model with a blob that increases its size over time. The peak frequency of the synchrotron bump varies by two orders of magnitude throughout the campaign. Our multi-band correlation study also hints at an anti-correlation between UV-optical and X-ray at a significance higher than 3 sigma. A VHE flare observed on MJD 57788 (2017 February 4) shows gamma-ray variability on multi-hour timescales, with a factor ten increase in the TeV flux but only a moderate increase in the keV flux. The related broadband SED is better described by a two-zone leptonic scenario rather than by a one-zone scenario. We find that the flare can be produced by the appearance of a compact second blob populated by high energetic electrons spanning a narrow range of Lorentz factors, from gamma(min)' = 2 x 10(4) to gamma(max)' = 6 x 10(5).</p
- …