1,203 research outputs found
Ice Accretion Prediction for a Typical Commercial Transport Aircraft
Ice accretion calculations were made for a modern commercial transport using the NASA Lewis LEWICE3D ice accretion code. The ice accretion calculations were made for the wing and horizontal tail using both isolated flow models and flow models incorporating the entire airplane. The isolated flow model calculations were made to assess the validity of using these simplified models in lieu of the entire model in the ice accretion analysis of full aircraft. Ice shapes typifying a rime and a mixed ice shape were generated for a 30 minute hold condition. In general, the calculated ice shapes looked reasonable and appeared representative of a rime and a mixed ice conditions. The isolated flow model simplification was good for the main wing except at the root where it overpredicted the amount of accreted ice relative to the full aircraft flow model. For the horizontal tail the size and amount of predicted ice compared well for the two flow models, but the position of the accretions were more towards the upper surface for the aircraft flow model relative to the isolated flow model. This was attributed to downwash from the main wing which resulted in a lower effective angle of attack for the aircraft tail
Numerical simulation of ice growth on a MS-317 swept wing geometry
An effort to develop a 3-D ice accretion modeling method was initiated. This first step towards creation of a complete aircraft icing simulation code builds on previously developed methods for calculating 3-D flow fields and particle trajectories combined with a 2-D ice accretion calculation along coordinate locations corresponding to streamlines. The types of calculations necessary to predict 3-D ice accretion is demonstrated. Results of calculations using 3-D method for a MS-317 swept wing geometry are projected onto a 2-D plane parallel to the free stream direction and compared to experimental results for the same geometry. It is anticipated that many modifications will be made to this approach, however this effort will lay the groundwork for future modeling efforts. Results indicate that rime ice shapes indicate a difficulty in accurately calculating the ice shape in the runback region
Icing Analysis of a Swept NACA 0012 Wing Using LEWICE3D Version 3.48
Icing calculations were performed for a NACA 0012 swept wing tip using LEWICE3D Version 3.48 coupled with the ANSYS CFX flow solver. The calculated ice shapes were compared to experimental data generated in the NASA Glenn Icing Research Tunnel (IRT). The IRT tests were designed to test the performance of the LEWICE3D ice void density model which was developed to improve the prediction of swept wing ice shapes. Icing tests were performed for a range of temperatures at two different droplet inertia parameters and two different sweep angles. The predicted mass agreed well with the experiment with an average difference of 12%. The LEWICE3D ice void density model under-predicted void density by an average of 30% for the large inertia parameter cases and by 63% for the small inertia parameter cases. This under-prediction in void density resulted in an over-prediction of ice area by an average of 115%. The LEWICE3D ice void density model produced a larger average area difference with experiment than the standard LEWICE density model, which doesn't account for the voids in the swept wing ice shape, (115% and 75% respectively) but it produced ice shapes which were deemed more appropriate because they were conservative (larger than experiment). Major contributors to the overly conservative ice shape predictions were deficiencies in the leading edge heat transfer and the sensitivity of the void ice density model to the particle inertia parameter. The scallop features present on the ice shapes were thought to generate interstitial flow and horse shoe vortices which enhance the leading edge heat transfer. A set of changes to improve the leading edge heat transfer and the void density model were tested. The changes improved the ice shape predictions considerably. More work needs to be done to evaluate the performance of these modifications for a wider range of geometries and icing condition
A hermeneutic inquiry into user-created personas in different Namibian locales
Persona is a tool broadly used in technology design to support communicational interactions between designers and users. Different Persona types and methods have evolved mostly in the Global North, and been partially deployed in the Global South every so often in its original User-Centred Design methodology. We postulate persona conceptualizations are expected to differ across cultures. We demonstrate this with an exploratory-case study on user-created persona co-designed with four Namibian ethnic groups: ovaHerero, Ovambo, ovaHimba and Khoisan. We follow a hermeneutic inquiry approach to discern cultural nuances from diverse human conducts. Findings reveal diverse self-representations whereby for each ethnic group results emerge in unalike fashions, viewpoints, recounts and storylines. This paper ultimately argues User-Created Persona as a potentially valid approach for pursuing cross-cultural depictions of personas that communicate cultural features and user experiences paramount to designing acceptable and gratifying technologies in dissimilar locales
Recommended from our members
Need to move your class online in a hurry? Here's how
This op-ed provides support on moving your class online in a hurry. While most colleges and universities have entered the world of online education in one way or another, not every educational institution or instructor has already done this, which places many educators in the position of having to learn a new mode of instruction quickly.
For those who are new to virtual classrooms, we encourage you to start with understanding and learning about the technology available, and preparing yourself, your students and your classrooms.
This article provides support on what to focus on and where to look for resources
Expression of PEG11 and PEG11AS transcripts in normal and callipyge sheep
BACKGROUND: The callipyge mutation is located within an imprinted gene cluster on ovine chromosome 18. The callipyge trait exhibits polar overdominant inheritance due to the fact that only heterozygotes inheriting a mutant paternal allele (paternal heterozygotes) have a phenotype of muscle hypertrophy, reduced fat and a more compact skeleton. The mutation is a single A to G transition in an intergenic region that results in the increased expression of several genes within the imprinted cluster without changing their parent-of-origin allele-specific expression. RESULTS: There was a significant effect of genotype (p < 0.0001) on the transcript abundance of DLK1, PEG11, and MEG8 in the muscles of lambs with the callipyge allele. DLK1 and PEG11 transcript levels were elevated in the hypertrophied muscles of paternal heterozygous animals relative to animals of the other three genotypes. The PEG11 locus produces a single 6.5 kb transcript and two smaller antisense strand transcripts, referred to as PEG11AS, in skeletal muscle. PEG11AS transcripts were detectable over a 5.5 kb region beginning 1.2 kb upstream of the PEG11 start codon and spanning the entire open reading frame. Analysis of PEG11 expression by quantitative PCR shows a 200-fold induction in the hypertrophied muscles of paternal heterozygous animals and a 13-fold induction in homozygous callipyge animals. PEG11 transcripts were 14-fold more abundant than PEG11AS transcripts in the gluteus medius of paternal heterozygous animals. PEG11AS transcripts were expressed at higher levels than PEG11 transcripts in the gluteus medius of animals of the other three genotypes. CONCLUSIONS: The effect of the callipyge mutation has been to alter the expression of DLK1, GTL2, PEG11 and MEG8 in the hypertrophied skeletal muscles. Transcript abundance of DLK1 and PEG11 was highest in paternal heterozygous animals and exhibited polar overdominant gene expression patterns; therefore, both genes are candidates for causing skeletal muscle hypertrophy. There was unique relationship of PEG11 and PEG11AS transcript abundance in the paternal heterozygous animals that suggests a RNA interference mechanism may have a role in PEG11 gene regulation and polar overdominance in callipyge sheep
Critical Pedagogy and Teaching Mathematics for Social Justice
In this article, the authors explore critical pedagogy within the context of mathematics classrooms. The exploration demonstrates the evolving pedagogical practices of mathematics teachers when teaching mathematics is explicitly connected to issues of social justice. To frame the exploration, the authors provide brief overviews of the theoretical tenets of critical pedagogy and of teaching mathematics for social justice. Through using narrative and textual data, the authors illustrate how a graduate-level, critical theory and teaching mathematics for social justice course assisted, in part, in providing not only a new language but also a legitimization in teachers becoming critical mathematics pedagogues
Nuclear Matrix Protein 4 Is a Novel Regulator of Ribosome Biogenesis and Controls the Unfolded Protein Response via Repression of Gadd34 Expression
The unfolded protein response (UPR) maintains protein homeostasis by governing the processing capacity of the endoplasmic reticulum (ER) to manage ER client loads; however, key regulators within the UPR remain to be identified. Activation of the UPR sensor PERK (EIFAK3/PEK) results in the phosphorylation of the α subunit of eIF2 (eIF2α-P), which represses translation initiation and reduces influx of newly synthesized proteins into the overloaded ER. As part of this adaptive response, eIF2α-P also induces a feedback mechanism through enhanced transcriptional and translational expression of Gadd34 (Ppp1r15A),which targets type 1 protein phosphatase for dephosphorylation of eIF2α-P to restore protein synthesis. Here we describe a novel mechanism by which Gadd34 expression is regulated through the activity of the zinc finger transcription factor NMP4 (ZNF384, CIZ). NMP4 functions to suppress bone anabolism, and we suggest that this occurs due to decreased protein synthesis of factors involved in bone formation through NMP4-mediated dampening of Gadd34 and c-Myc expression. Loss of Nmp4 resulted in an increase in c-Myc and Gadd34 expression that facilitated enhanced ribosome biogenesis and global protein synthesis. Importantly, protein synthesis was sustained during pharmacological induction of the UPR through a mechanism suggested to involve GADD34-mediated dephosphorylation of eIF2α-P. Sustained protein synthesis sensitized cells to pharmacological induction of the UPR, and the observed decrease in cell viability was restored upon inhibition of GADD34 activity. We conclude that NMP4 is a key regulator of ribosome biogenesis and the UPR, which together play a central role in determining cell viability during endoplasmic reticulum stress
Social Ecological Climate Resilience Project - 2016
Prepared for: North Central Climate Science Center, Fort Collins, Colorado.February 2017.Includes bibliographical references.Climate change is already having impacts on nature, ecosystem services and people in southwestern Colorado and is likely to further alter our natural landscapes in the coming decades. Understanding the potential changes and developing adaptation strategies can help ensure that natural landscapes and human communities remain healthy in the face of a changing climate. An interdisciplinary team consisting of social, ecological and climate scientists developed an innovative climate planning framework and worked with the Social‐Ecological Climate Resilience Project (SECR) and other stakeholders in Colorado’s San Juan River watershed to develop adaptation strategies for two significant landscapes, pinyon juniper woodlands and seeps, springs, and wetland resources under three climate scenarios between 2035 and 2050. This report summarizes the planning framework and results for the pinyon‐juniper landscape (the seeps, springs and wetlands results will be provided separately). This framework can be utilized to develop strategies for other landscapes at local, state, and national scales. Diagrams, narrative scenarios, and maps that depict climate scenarios and the social‐ecological responses help us portray the climate impact in the face of an uncertain future. Interviews and focus group workshops with agency staff and stakeholders who are users of public lands identified several important opportunities to improve the adaptation planning process for developing strategies that meet both social and ecological needs. Planning techniques that include or directly relate to specific resources, such as water and forage, or to activities, such as recreation or grazing, provide avenues for engaging diverse stakeholders into the process. Utilizing the scenarios to understand the impacts to our social and ecological landscapes, three overarching landscape‐scale adaptation strategies were developed. Each of these strategies has a suite of potential actions required to reach a desired future condition. The three key strategies are: 1) identify and protect persistent ecosystems as refugia, 2) proactively manage for resilience, and 3) accept, assist, and allow for transformation in non‐climate refugia sites. If the framework and strategies from this project are adopted by the local community, including land managers, owners, and users, the climate change impacts can be reduced, allowing for a more sustainable human and natural landscape
- …