57 research outputs found

    Pyrokinin β-Neuropeptide Affects Necrophoretic Behavior in Fire Ants (S. invicta), and Expression of β-NP in a Mycoinsecticide Increases Its Virulence

    Get PDF
    Fire ants are one of the world's most damaging invasive pests, with few means for their effective control. Although ecologically friendly alternatives to chemical pesticides such as the insecticidal fungus Beauveria bassiana have been suggested for the control of fire ant populations, their use has been limited due to the low virulence of the fungus and the length of time it takes to kill its target. We present a means of increasing the virulence of the fungal agent by expressing a fire ant neuropeptide. Expression of the fire ant (Solenopsis invicta) pyrokinin β -neuropeptide (β-NP) by B. bassiana increased fungal virulence six-fold towards fire ants, decreased the LT50, but did not affect virulence towards the lepidopteran, Galleria mellonella. Intriguingly, ants killed by the β-NP expressing fungus were disrupted in the removal of dead colony members, i.e. necrophoretic behavior. Furthermore, synthetic C-terminal amidated β-NP but not the non-amidated peptide had a dramatic effect on necrophoretic behavior. These data link chemical sensing of a specific peptide to a complex social behavior. Our results also confirm a new approach to insect control in which expression of host molecules in an insect pathogen can by exploited for target specific augmentation of virulence. The minimization of the development of potential insect resistance by our approach is discussed

    Phospholipids Trigger Cryptococcus neoformans Capsular Enlargement during Interactions with Amoebae and Macrophages

    Get PDF
    A remarkable aspect of the interaction of Cryptococcus neoformans with mammalian hosts is a consistent increase in capsule volume. Given that many aspects of the interaction of C. neoformans with macrophages are also observed with amoebae, we hypothesized that the capsule enlargement phenomenon also had a protozoan parallel. Incubation of C. neoformans with Acanthamoeba castellanii resulted in C. neoformans capsular enlargement. The phenomenon required contact between fungal and protozoan cells but did not require amoeba viability. Analysis of amoebae extracts showed that the likely stimuli for capsule enlargement were protozoan polar lipids. Extracts from macrophages and mammalian serum also triggered cryptococcal capsular enlargement. C. neoformans capsule enlargement required expression of fungal phospholipase B, but not phospholipase C. Purified phospholipids, in particular, phosphatidylcholine, and derived molecules triggered capsular enlargement with the subsequent formation of giant cells. These results implicate phospholipids as a trigger for both C. neoformans capsule enlargement in vivo and exopolysaccharide production. The observation that the incubation of C. neoformans with phospholipids led to the formation of giant cells provides the means to generate these enigmatic cells in vitro. Protozoan- or mammalian-derived polar lipids could represent a danger signal for C. neoformans that triggers capsular enlargement as a non-specific defense mechanism against potential predatory cells. Hence, phospholipids are the first host-derived molecules identified to trigger capsular enlargement. The parallels apparent in the capsular response of C. neoformans to both amoebae and macrophages provide additional support for the notion that certain aspects of cryptococcal virulence emerged as a consequence of environmental interactions with other microorganisms such as protists

    Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana

    Get PDF
    The ascomycete fungus Beauveria bassiana is a pathogen of hundreds of insect species and is commercially produced as an environmentally friendly mycoinsecticide. We sequenced the genome of B. bassiana and a phylogenomic analysis confirmed that ascomycete entomopathogenicity is polyphyletic, but also revealed convergent evolution to insect pathogenicity. We also found many species-specific virulence genes and gene family expansions and contractions that correlate with host ranges and pathogenic strategies. These include B. bassiana having many more bacterial-like toxins (suggesting an unsuspected potential for oral toxicity) and effector-type proteins. The genome also revealed that B. bassiana resembles the closely related Cordyceps militaris in being heterothallic, although its sexual stage is rarely observed. A high throughput RNA-seq transcriptomic analysis revealed that B. bassiana could sense and adapt to different environmental niches by activating well-defined gene sets. The information from this study will facilitate further development of B. bassiana as a cost-effective mycoinsecticide
    corecore