42 research outputs found

    Study of uptake mechanisms of halloysite nanotubes in different cell lines

    Get PDF
    Purpose: Halloysite nanotubes (HNTs) are a natural aluminosilicate clay with a chemical formula of Al2Si2O5(OH)4Ă—nH2O and a hollow tubular structure. Due to their peculiar structure, HNTs can play an important role as a drug carrier system. Currently, the mechanism by which HNTs are internalized into living cells, and what is the transport pathway, is still unclear. Therefore, this study aimed at establishing the in vitro mechanism by which halloysite nanotubes could be internalized, using phagocytic and non-phagocytic cell lines as models. Methods: The HNT/CURBO hybrid system, where a fluorescent probe (CURBO) is confined in the HNT lumen, has been used as a model to study the transport pathway mechanisms of HNTs. The cytocompatibility of HNT/CURBO on cell lines model was investigated by MTS assay. In order to identify the internalization pathway involved in the cellular uptake, we performed various endocytosis-inhibiting studies, and we used fluorescence microscopy to verify the nanomaterial internalization by cells. We evaluated the haemolytic effect of HNT/CURBO placed in contact with human red blood cells (HRBCs), by reading the absorbance value of the supernatant at 570 nm. Results: The HNT/CURBO is highly biocompatible and does not have an appreciable haemolytic effect. The results of the inhibition tests have shown that the internalization process of nanotubes occurs in an energy-dependent manner in both the investigated cell lines, although they have different characteristics. In particular, in non-phagocytic cells, clathrin-dependent and independent endocytosis are involved. In phagocytic cells, in addition to phagocytosis and clathrin-dependent endocytosis, microtubules also participate in the halloysite cellular trafficking. Upon internalization by cells, HNT/CURBO is localized in the cytoplasmic area, particularly in the perinuclear region. Conclusion: Understanding the cellular transport pathways of HNTs can help in the rational design of novel drug delivery systems and can be of great value for their applications in biotechnology

    A new p65 isoform that bind the glucocorticoid hormone and is expressed in inflammation liver diseases and COVID-19

    Get PDF
    Inflammation is a physiological process whose deregulation causes some diseases including cancer. Nuclear Factor kB (NF-kB) is a family of ubiquitous and inducible transcription factors, in which the p65/p50 heterodimer is the most abundant complex, that play critical roles mainly in inflammation. Glucocorticoid Receptor (GR) is a ligand-activated transcription factor and acts as an anti-inflammatory agent and immunosuppressant. Thus, NF-kB and GR are physiological antagonists in the inflammation process. Here we show that in mice and humans there is a spliced variant of p65, named p65 iso5, which binds the corticosteroid hormone dexamethasone amplifying the effect of the glucocorticoid receptor and is expressed in the liver of patients with hepatic cirrhosis and hepatocellular carcinoma (HCC). Furthermore, we have quantified the gene expression level of p65 and p65 iso5 in the PBMC of patients affected by SARS-CoV-2 disease. The results showed that in these patients the p65 and p65 iso5 mRNA levels are higher than in healthy subjects. The ability of p65 iso5 to bind dexamethasone and the regulation of the glucocorticoid (GC) response in the opposite way of the wild type improves our knowledge and understanding of the anti-inflammatory response and identifies it as a new therapeutic target to control inflammation and related diseases

    Systemic Fusariosis: A Rare Complication in Children with Acute Lymphoblastic Leukemia

    No full text
    Fusarium species are ubiquitous pathogens causing opportunistic infections in immunocompromised patients. Clinical presentation depends on a host’s immunity and can be localized or disseminated. Since there are few reports of disseminated fusariosis in children, we described an unusual case of Fusarium solani infection in a 9-year-old child with acute lymphoblastic leukemia (ALL). This patient presented a deep wound in the elbow at diagnosis. During the induction phase of chemotherapy, he developed multiple skin lesions and severe pneumonia; Fusarium solani was cultured from the skin lesions. He was treated with a high dose of liposomal amphotericin B, followed by voriconazole. Starting from this peculiar case, we collected all patients with acute leukemia affected by Fusarium infection, treated in the pediatric Onco-Hematology Division of Padua University Hospital during the last 20 years. We identified another six cases: all these patients were affected by acute myeloid leukemia (AML) and five of them presented a relapsed/refractory disease. Two out of seven patients died because of infection; five patients recovered from infection, but three out of seven died because of leukemia. Skin lesions in immunocompromised patients should rise the suspicion of disseminated fusariosis. Furthermore, considering the emergence of filamentous fungi in immunocompromised patients, we all should be aware of Fusarium infection, reminding us that the diagnosis is important to cure the infection

    Antithrombin Plasma Levels and Fibtem Determination in Children with Acute Lymphoblastic Leukemia Undergoing Asparaginase Treatment

    No full text
    none5noneBiddeci G; Sanna G; Geranio G; Spiezia L; et al.Biddeci, G; Sanna, G; Geranio, G; Spiezia, L; Et, Al

    Nanomaterials: A Review about Halloysite Nanotubes, Properties, and Application in the Biological Field

    No full text
    The use of synthetic materials and the attention towards environmental hazards and toxicity impose the development of green composites with natural origins. Clay is one of the candidates for this approach. Halloysite is a natural clay mineral, a member of the Kaolin group, with characteristic tubular morphology, usually named halloysite nanotubes (HNTs). The different surface chemistry of halloysite allows the selective modification of both the external surface and the inner lumen by supramolecular or covalent interactions. An interesting aspect of HNTs is related to the possibility of introducing different species that can be released more slowly compared to the pristine compound. Due to their unique hollow morphology and large cavity, HNTs can be employed as an optimal natural nanocarrier. This review discusses the structure, properties, and application of HNTs in the biological field, highlighting their high biocompatibility, and analyse the opportunity to use new HNT hybrids as drug carriers and delivery systems

    Secular trends in growth of African Pygmies and Bantu

    No full text
    OBJECTIVE: The aim of this study was to investigate whether a secular trend in growth occurred during the last century in Pygmies from Cameroon (West Pygmies) and in Bantu rural farmers, the latter being studied to serve as controls.-DESIGN: The evolution in height of West Pygmies and Bantu farmers from 1911 to 2006 was evaluated using data from the literature as well as data gathered by our research team during an expedition to Cameroon in 2006. RESULTS: During the last century, no secular trend in west Pygmies is apparent, as height changed from 151 cm to 155 cm in males and from 143 cm to 146 cm in females. A small though significant (p=0.026), increment (about 2 cm) was observed only in female subjects during the last ten years. By contrast, Bantu heights show a significant change from 1943 to 2006 for both males (from 159 cm to 172 cm; p=0.025) and females (from 148 cm to 160 cm; p=0.029). CONCLUSIONS: Over the last century, the Bantu population exhibited a significant secular trend for height, whereas West Pygmies did not increase their linear growth. The lack of secular trend in Pygmies possibly suggests that their stature reflects adaptation to the forest lifestyle. We may hypothesize that not only environmental but epigenetic factors have also contributed to their growth potential
    corecore