117 research outputs found
Antibody Responses to SARS-CoV-2 Infection—Comparative Determination of Seroprevalence in Two High-Throughput Assays versus a Sensitive Spike Protein ELISA
From MDPI via Jisc Publications RouterHistory: accepted 2021-11-07, pub-electronic 2021-11-11Publication status: PublishedRobust assay development for SARS-CoV-2 serological testing requires assessment of asymptomatic and non-hospitalised individuals to determine if assays are sensitive to mild antibody responses. Our study evaluated the performance characteristics of two high-throughput SARS-CoV-2 IgG nucleocapsid assays (Abbott Architect and Roche) and The Binding Site (TBS) Anti-Spike IgG/A/M ELISA kit in samples from healthcare workers (HCWs). The 252 samples were collected from multi-site NHS trusts and analysed for SARS-CoV-2 serology. Assay performance was evaluated between these three platforms and ROC curves were used to redefine the Abbott threshold. Concordance between Abbott and TBS was 66%. Any discrepant results were analysed using Roche, which showed 100% concordance with TBS. Analysis conducted in HCWs within 58 days post-PCR result demonstrated 100% sensitivity for both Abbott and Roche. Longitudinal analysis for >100 days post-PCR led to sensitivity of 77.2% and 100% for Abbott and Roche, respectively. A redefined Abbott threshold (0.64) increased sensitivity to 90%, producing results comparable to TBS and Roche. The manufacturer’s threshold set by Abbott contributes to lower sensitivity and elevated false-negative occurrences. Abbott performance improved upon re-optimisation of the cut-off threshold. Our findings provided evidence that TBS can be used as bespoke alternative for SARS-CoV-2 serology analysis where high-throughput platforms are not feasible on site
Radio imaging of the Subaru/XMM-Newton Deep Field - III. Evolution of the radio luminosity function beyond z=1
We present spectroscopic and eleven-band photometric redshifts for galaxies
in the 100-uJy Subaru/XMM-Newton Deep Field radio source sample. We find good
agreement between our redshift distribution and that predicted by the SKA
Simulated Skies project. We find no correlation between K-band magnitude and
radio flux, but show that sources with 1.4-GHz flux densities below ~1mJy are
fainter in the near-infrared than brighter radio sources at the same redshift,
and we discuss the implications of this result for spectroscopically-incomplete
samples where the K-z relation has been used to estimate redshifts. We use the
infrared--radio correlation to separate our sample into radio-loud and
radio-quiet objects and show that only radio-loud hosts have spectral energy
distributions consistent with predominantly old stellar populations, although
the fraction of objects displaying such properties is a decreasing function of
radio luminosity. We calculate the 1.4-GHz radio luminosity function (RLF) in
redshift bins to z=4 and find that the space density of radio sources increases
with lookback time to z~2, with a more rapid increase for more powerful
sources. We demonstrate that radio-loud and radio-quiet sources of the same
radio luminosity evolve very differently. Radio-quiet sources display strong
evolution to z~2 while radio-loud AGNs below the break in the radio luminosity
function evolve more modestly and show hints of a decline in their space
density at z>1, with this decline occurring later for lower-luminosity objects.
If the radio luminosities of these sources are a function of their black hole
spins then slowly-rotating black holes must have a plentiful fuel supply for
longer, perhaps because they have yet to encounter the major merger that will
spin them up and use the remaining gas in a major burst of star formation.Comment: Accepted for publication in MNRAS: 36 pages, including 13 pages of
figures to appear online only. In memory of Stev
Fundamental properties of Fanaroff-Riley II radio galaxies investigated via Monte Carlo simulations
[Abridged] Radio galaxies and quasars are among the largest and most powerful
single objects known and are believed to have had a significant impact on the
evolving Universe and its large scale structure. We explore the intrinsic and
extrinsic properties of the population of FRII objects (kinetic luminosities,
lifetimes, and the central densities of their environments). In particular, the
radio and kinetic luminosity functions of FRIIs are investigated using the
complete, flux limited radio catalogues of 3CRR and Best et al. We construct
multidimensional Monte Carlo simulations using semi-analytical models of FRII
radio source growth to create artificial samples of radio galaxies. Unlike
previous studies, we compare radio luminosity functions found with both the
observed and simulated data to explore the fundamental source parameters. We
allow the source physical properties to co-evolve with redshift, and we find
that all the investigated parameters most likely undergo cosmological
evolution. Strikingly, we find that the break in the kinetic luminosity
function must undergo redshift evolution of at least (1+z)^3. The fundamental
parameters are strongly degenerate, and independent constraints are necessary
to draw more precise conclusions. We use the estimated kinetic luminosity
functions to set constraints on the duty cycles of these powerful radio
sources. A comparison of the duty cycles of powerful FRIIs with those
determined from radiative luminosities of AGN of comparable black hole mass
suggests a transition in behaviour from high to low redshifts, corresponding to
either a drop in the typical black hole mass of powerful FRIIs at low
redshifts, or a transition to a kinetically-dominated, radiatively-inefficient
FRII population.Comment: Accepted to MNRAS. 30 pages, 18 figures, 4 tables + online material
(in appendix): 9 pages, 14 figure
Verb phrase ellipsis: The view from information structure.
Abstract Findings from three experimental studies are presented in support of the hypothesis that the reduced acceptability associated with antecedent mismatch under ellipsis reflects violation of an information structural constraint governing contrastive topic structures, and not an ellipsis-specific licensing constraint as previously assumed. Magnitude estimation data show that the penalty associated with a mismatched antecedent is larger for contrastive topic ellipses as compared to ellipses which exhibit simple (non-contrastive topic) focus. The same pattern of acceptability is also observed for non-ellipsis controls, however. Online reading times indicate increased processing costs associated with antecedent mismatch, and the cost is greater in contrastive topic as compared to simple focus ellipses. Elevated reading times for mismatched contrastive topics are observed throughout the target clause, however, including regions prior to the ellipsis site.
The Role of Headwater Streams in Downstream Water Quality1
Knowledge of headwater influences on the water-quality and flow conditions of downstream waters is essential to water-resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water-quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass-balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water-quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first-order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first-order headwaters contribute approximately 70% of the mean-annual water volume and 65% of the nitrogen flux in second-order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and 40% in fourth- and higher-order rivers that include navigable waters and their tributaries. These results underscore the profound influence that headwater areas have on shaping downstream water quantity and water quality. The results have relevance to water-resource management and regulatory decisions and potentially broaden understanding of the spatial extent of Federal CWA jurisdiction in U.S. waters
Macrophages promote angiogenesis in human breast tumour spheroids in vivo
An in vivo model has been established to study the role of macrophages in the initiation of angiogenesis by human breast tumour spheroids in vivo. The extent of the angiogenic response induced by T47D spheroids implanted into the dorsal skinfold chamber in nude mice was measured in vivo and compared to that induced by spheroids infiltrated with human macrophages prior to implantation. Our results indicate that the presence of macrophages in spheroids resulted in at least a three-fold upregulation in the release of vascular endothelial growth factor (VEGF) in vitro when compared with spheroids composed only of tumour cells. The angiogenic response measured around the spheroids, 3 days after in vivo implantation, was significantly greater in the spheroids infiltrated with macrophages. The number of vessels increased (macrophages vs no macrophages 34±1.9 vs 26±2.5, P<0.01), were shorter in length (macrophages vs no macrophages 116±4.92 vs 136±6.52, P<0.008) with an increased number of junctions (macrophages vs no macrophages 14±0.93 vs 11±1.25, P<0.025) all parameters indicative of new vessel formation. This is the first study to demonstrate a role for macrophages in the initiation of tumour angiogenesis in vivo
Increased Circulating Adiponectin in Response to Thiazolidinediones: Investigating the Role of Bone Marrow Adipose Tissue
BACKGROUND: Bone marrow adipose tissue (MAT) contributes to increased circulating adiponectin, an insulin-sensitizing hormone, during caloric restriction (CR), but whether this occurs in other contexts remains unknown. The antidiabetic thiazolidinediones (TZDs) also promote MAT expansion and hyperadiponectinemia, even without increasing adiponectin expression in white adipose tissue (WAT). OBJECTIVES: To test the hypothesis that MAT expansion contributes to TZD-associated hyperadiponectinemia, we investigated the effects of rosiglitazone, a prototypical TZD, in wild-type (WT) or Ocn-Wnt10b mice. The latter resist MAT expansion during CR, leading us to postulate that they would also resist this effect of rosiglitazone. DESIGN: Male and female WT or Ocn-Wnt10b mice (C57BL/6J) were treated with or without rosiglitazone for 2, 4, or 8 weeks, up to 30 weeks of age. MAT content was assessed by osmium tetroxide staining and adipocyte marker expression. Circulating adiponectin was determined by ELISA. RESULTS: In WT mice, rosiglitazone caused hyperadiponectinemia and MAT expansion. Compared to WT mice, Ocn-Wnt10b mice had significantly less MAT in distal tibiae and sometimes in proximal tibiae; however, interpretation was complicated by the leakage of osmium tetroxide from ruptures in some tibiae, highlighting an important technical consideration for osmium-based MAT analysis. Despite decreased MAT in Ocn-Wnt10b mice, circulating adiponectin was generally similar between WT and Ocn-Wnt10b mice; however, in females receiving rosiglitazone for 4 weeks, hyperadiponectinemia was significantly blunted in Ocn-Wnt10b compared to WT mice. Notably, this was also the only group in which tibial adiponectin expression was lower than in WT mice, suggesting a close association between MAT adiponectin production and circulating adiponectin. However, rosiglitazone significantly increased adiponectin protein expression in WAT, suggesting that WAT contributes to hyperadiponectinemia in this context. Finally, rosiglitazone upregulated uncoupling protein 1 in brown adipose tissue (BAT), but this protein was undetectable in tibiae, suggesting that MAT is unlikely to share thermogenic properties of BAT. CONCLUSION: TZD-induced hyperadiponectinemia is closely associated with increased adiponectin production in MAT but is not prevented by the partial loss of MAT that occurs in Ocn-Wnt10b mice. Thus, more robust loss-of-MAT models are required for future studies to better establish MAT’s elusive functions, both on an endocrine level and beyond
Multiple pathways of SARS-CoV-2 nosocomial transmission uncovered by integrated genomic and epidemiological analyses during the second wave of the COVID-19 pandemic in the UK
IntroductionThroughout the global COVID-19 pandemic, nosocomial transmission has represented a major concern for healthcare settings and has accounted for many infections diagnosed within hospitals. As restrictions ease and novel variants continue to spread, it is important to uncover the specific pathways by which nosocomial outbreaks occur to understand the most suitable transmission control strategies for the future.MethodsIn this investigation, SARS-CoV-2 genome sequences obtained from 694 healthcare workers and 1,181 patients were analyzed at a large acute NHS hospital in the UK between September 2020 and May 2021. These viral genomic data were combined with epidemiological data to uncover transmission routes within the hospital. We also investigated the effects of the introduction of the highly transmissible variant of concern (VOC), Alpha, over this period, as well as the effects of the national vaccination program on SARS-CoV-2 infection in the hospital.ResultsOur results show that infections of all variants within the hospital increased as community prevalence of Alpha increased, resulting in several outbreaks and super-spreader events. Nosocomial infections were enriched amongst older and more vulnerable patients more likely to be in hospital for longer periods but had no impact on disease severity. Infections appeared to be transmitted most regularly from patient to patient and from patients to HCWs. In contrast, infections from HCWs to patients appeared rare, highlighting the benefits of PPE in infection control. The introduction of the vaccine at this time also reduced infections amongst HCWs by over four-times.DiscussionThese analyses have highlighted the importance of control measures such as regular testing, rapid lateral flow testing alongside polymerase chain reaction (PCR) testing, isolation of positive patients in the emergency department (where possible), and physical distancing of patient beds on hospital wards to minimize nosocomial transmission of infectious diseases such as COVID-19
MSL2 variants lead to a neurodevelopmental syndrome with lack of coordination, epilepsy, specific dysmorphisms, and a distinct episignature.
Epigenetic dysregulation has emerged as an important etiological mechanism of neurodevelopmental disorders (NDDs). Pathogenic variation in epigenetic regulators can impair deposition of histone post-translational modifications leading to aberrant spatiotemporal gene expression during neurodevelopment. The male-specific lethal (MSL) complex is a prominent multi-subunit epigenetic regulator of gene expression and is responsible for histone 4 lysine 16 acetylation (H4K16ac). Using exome sequencing, here we identify a cohort of 25 individuals with heterozygous de novo variants in MSL complex member MSL2. MSL2 variants were associated with NDD phenotypes including global developmental delay, intellectual disability, hypotonia, and motor issues such as coordination problems, feeding difficulties, and gait disturbance. Dysmorphisms and behavioral and/or psychiatric conditions, including autism spectrum disorder, and to a lesser extent, seizures, connective tissue disease signs, sleep disturbance, vision problems, and other organ anomalies, were observed in affected individuals. As a molecular biomarker, a sensitive and specific DNA methylation episignature has been established. Induced pluripotent stem cells (iPSCs) derived from three members of our cohort exhibited reduced MSL2 levels. Remarkably, while NDD-associated variants in two other members of the MSL complex (MOF and MSL3) result in reduced H4K16ac, global H4K16ac levels are unchanged in iPSCs with MSL2 variants. Regardless, MSL2 variants altered the expression of MSL2 targets in iPSCs and upon their differentiation to early germ layers. Our study defines an MSL2-related disorder as an NDD with distinguishable clinical features, a specific blood DNA episignature, and a distinct, MSL2-specific molecular etiology compared to other MSL complex-related disorders
Multiple pathways of SARS-CoV-2 nosocomial transmission uncovered by integrated genomic and epidemiological analyses during the second wave of the COVID-19 pandemic in the UK
INTRODUCTION: Throughout the global COVID-19 pandemic, nosocomial transmission has represented a major concern for healthcare settings and has accounted for many infections diagnosed within hospitals. As restrictions ease and novel variants continue to spread, it is important to uncover the specific pathways by which nosocomial outbreaks occur to understand the most suitable transmission control strategies for the future.
METHODS: In this investigation, SARS-CoV-2 genome sequences obtained from 694 healthcare workers and 1,181 patients were analyzed at a large acute NHS hospital in the UK between September 2020 and May 2021. These viral genomic data were combined with epidemiological data to uncover transmission routes within the hospital. We also investigated the effects of the introduction of the highly transmissible variant of concern (VOC), Alpha, over this period, as well as the effects of the national vaccination program on SARS-CoV-2 infection in the hospital.
RESULTS: Our results show that infections of all variants within the hospital increased as community prevalence of Alpha increased, resulting in several outbreaks and super-spreader events. Nosocomial infections were enriched amongst older and more vulnerable patients more likely to be in hospital for longer periods but had no impact on disease severity. Infections appeared to be transmitted most regularly from patient to patient and from patients to HCWs. In contrast, infections from HCWs to patients appeared rare, highlighting the benefits of PPE in infection control. The introduction of the vaccine at this time also reduced infections amongst HCWs by over four-times.
DISCUSSION: These analyses have highlighted the importance of control measures such as regular testing, rapid lateral flow testing alongside polymerase chain reaction (PCR) testing, isolation of positive patients in the emergency department (where possible), and physical distancing of patient beds on hospital wards to minimize nosocomial transmission of infectious diseases such as COVID-19
- …