12 research outputs found

    Fluorescence in situ hybridization with high-complexity repeat-free oligonucleotide probes generated by massively parallel synthesis

    Get PDF
    The ability to visualize specific DNA sequences, on chromosomes and in nuclei, by fluorescence in situ hybridization (FISH) is fundamental to many aspects of genetics, genomics and cell biology. Probe selection is currently limited by the availability of DNA clones or the appropriate pool of DNA sequences for PCR amplification. Here, we show that liquid-phase probe pools from sequence capture technology can be adapted to generate fluorescently labelled pools of oligonucleotides that are very effective as repeat-free FISH probes in mammalian cells. As well as detection of small (15 kb) and larger (100 kb) specific loci in both cultured cells and tissue sections, we show that complex oligonucleotide pools can be used as probes to visualize features of nuclear organization. Using this approach, we dramatically reveal the disposition of exons around the outside of a chromosome territory core and away from the nuclear periphery

    An autobiography, with a historical sketch of the founding and early development of the American Museum of Natural History

    No full text
    Founder and first President of the American Museum of Natural History; curator emeritus of the Museum's Dept. of Public Instruction

    Reizen in den Oost-Indischen Archipel

    No full text

    KONG (China) (RĂ­o). Cuencas hidrogrĂĄficas (1869). Escala indeterminada

    No full text
    Comprende desde Hingan a WuchauRelieve representado por sombreadoSketch map illustrating Mr. Bickmore's Journey from canton to Hanko
    corecore