72 research outputs found
Dilepton mass spectra in p+p collisions at sqrt(s)= 200 GeV and the contribution from open charm
The PHENIX experiement has measured the electron-positron pair mass spectrum
from 0 to 8 GeV/c^2 in p+p collisions at sqrt(s)=200 GeV. The contributions
from light meson decays to e^+e^- pairs have been determined based on
measurements of hadron production cross sections by PHENIX. They account for
nearly all e^+e^- pairs in the mass region below 1 GeV/c^2. The e^+e^- pair
yield remaining after subtracting these contributions is dominated by
semileptonic decays of charmed hadrons correlated through flavor conservation.
Using the spectral shape predicted by PYTHIA, we estimate the charm production
cross section to be 544 +/- 39(stat) +/- 142(syst) +/- 200(model) \mu b, which
is consistent with QCD calculations and measurements of single leptons by
PHENIX.Comment: 375 authors from 57 institutions, 18 pages, 4 figures, 2 tables.
Submitted to Physics Letters B. v2 fixes technical errors in matching authors
to institutions. Plain text data tables for the points plotted in figures for
this and previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Inclusive cross section and double helicity asymmetry for \pi^0 production in p+p collisions at sqrt(s)=200 GeV: Implications for the polarized gluon distribution in the proton
The PHENIX experiment presents results from the RHIC 2005 run with polarized
proton collisions at sqrt(s)=200 GeV, for inclusive \pi^0 production at
mid-rapidity. Unpolarized cross section results are given for transverse
momenta p_T=0.5 to 20 GeV/c, extending the range of published data to both
lower and higher p_T. The cross section is described well for p_T < 1 GeV/c by
an exponential in p_T, and, for p_T > 2 GeV/c, by perturbative QCD. Double
helicity asymmetries A_LL are presented based on a factor of five improvement
in uncertainties as compared to previously published results, due to both an
improved beam polarization of 50%, and to higher integrated luminosity. These
measurements are sensitive to the gluon polarization in the proton, and exclude
maximal values for the gluon polarization.Comment: 375 authors, 7 pages, 3 figures. Submitted to Phys. Rev. D, Rapid
Communications. Plain text data tables for the points plotted in figures for
this and previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Measurement of high-p_T Single Electrons from Heavy-Flavor Decays in p+p Collisions at sqrt(s) = 200 GeV
The momentum distribution of electrons from decays of heavy flavor (charm and
beauty) for midrapidity |y| < 0.35 in p+p collisions at sqrt(s) = 200 GeV has
been measured by the PHENIX experiment at the Relativistic Heavy Ion Collider
(RHIC) over the transverse momentum range 0.3 < p_T < 9 GeV/c. Two independent
methods have been used to determine the heavy flavor yields, and the results
are in good agreement with each other. A fixed-order-plus-next-to-leading-log
pQCD calculation agrees with the data within the theoretical and experimental
uncertainties, with the data/theory ratio of 1.72 +/- 0.02^stat +/- 0.19^sys
for 0.3 < p_T < 9 GeV/c. The total charm production cross section at this
energy has also been deduced to be sigma_(c c^bar) = 567 +/- 57^stat +/-
224^sys micro barns.Comment: 375 authors from 57 institutions, 6 pages, 3 figures. Submitted to
Physical Review Letters. Plain text data tables for the points plotted in
figures for this and previous PHENIX publications are (or will be) publicly
available at http://www.phenix.bnl.gov/papers.htm
System Size and Energy Dependence of Jet-Induced Hadron Pair Correlation Shapes in Cu+Cu and Au+Au Collisions at sqrt(s_NN) = 200 and 62.4 GeV
We present azimuthal angle correlations of intermediate transverse momentum
(1-4 GeV/c) hadrons from {dijets} in Cu+Cu and Au+Au collisions at sqrt(s_NN) =
62.4 and 200 GeV. The away-side dijet induced azimuthal correlation is
broadened, non-Gaussian, and peaked away from \Delta\phi=\pi in central and
semi-central collisions in all the systems. The broadening and peak location
are found to depend upon the number of participants in the collision, but not
on the collision energy or beam nuclei. These results are consistent with sound
or shock wave models, but pose challenges to Cherenkov gluon radiation models.Comment: 464 authors from 60 institutions, 6 pages, 3 figures, 2 tables.
Submitted to Physical Review Letters. Plain text data tables for the points
plotted in figures for this and previous PHENIX publications are (or will be)
publicly available at http://www.phenix.bnl.gov/papers.htm
Recommended from our members
Measurement of Bottom versus Charm as a Function of Transverse Momentum with Electron-Hadron Correlations in p+p Collisions at sqrt(s)=200 GeV
The momentum distribution of electrons from semi-leptonic decays of charm and
bottom for mid-rapidity |y|<0.35 in p+p collisions at sqrt(s)=200 GeV is
measured by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC)
over the transverse momentum range 2 < p_T < 7 GeV/c. The ratio of the yield of
electrons from bottom to that from charm is presented. The ratio is determined
using partial D/D^bar --> e^{+/-} K^{-/+} X (K unidentified) reconstruction. It
is found that the yield of electrons from bottom becomes significant above 4
GeV/c in p_T. A fixed-order-plus-next-to-leading-log (FONLL) perturbative
quantum chromodynamics (pQCD) calculation agrees with the data within the
theoretical and experimental uncertainties. The extracted total bottom
production cross section at this energy is \sigma_{b\b^bar}= 3.2
^{+1.2}_{-1.1}(stat) ^{+1.4}_{-1.3}(syst) micro b.Comment: 432 authors, 6 pages text, 3 figures. Submitted to Phys. Rev. Lett.
Plain text data tables for the points plotted in figures for this and
previous PHENIX publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Scaling properties of azimuthal anisotropy in Au+Au and Cu+Cu collisions at sqrt(s_NN) = 200 GeV
Detailed differential measurements of the elliptic flow for particles
produced in Au+Au and Cu+Cu collisions at sqrt(s_NN) = 200 GeV are presented.
Predictions from perfect fluid hydrodynamics for the scaling of the elliptic
flow coefficient v_2 with eccentricity, system size and transverse energy are
tested and validated. For transverse kinetic energies KE_T ~ m_T-m up to ~1
GeV, scaling compatible with the hydrodynamic expansion of a thermalized fluid
is observed for all produced particles. For large values of KE_T, the mesons
and baryons scale separately. A universal scaling for the flow of both mesons
and baryons is observed for the full transverse kinetic energy range of the
data when quark number scaling is employed. In both cases the scaling is more
pronounced in terms of KE_T rather than transverse momentum.Comment: 422 authors from 58 institutions, 6 pages, 3 figures. Submitted to
Physical Review Letters. Plain text data tables for the points plotted in
figures for this and previous PHENIX publications are (or will be) publicly
available at http://www.phenix.bnl.gov/papers.htm
Correlated Production of p and p^bar in Au+Au Collisions at sqrt(s_NN) = 200 GeV
Correlations between p and pbar's at transverse momenta typical of enhanced
baryon production in Au+Au collisions are reported. The PHENIX experiment
measures same and opposite sign baryon pairs in Au+Au collisions at sqrt(s_NN)
= 200 GeV. Correlated production of p and p^bar with the trigger particle from
the range 2.5 < p_T < 4.0 GeV/c and the associated particle with 1.8 < p_T <
2.5 GeV/c is observed to be nearly independent of the centrality of the
collisions. Same sign pairs show no correlation at any centrality. The
conditional yield of mesons triggered by baryons (and anti-baryons) and mesons
in the same pT range rises with increasing centrality, except for the most
central collisions, where baryons show a significantly smaller number of
associated mesons. These data are consistent with a picture in which hard
scattered partons produce correlated p and p^bar in the p_T region of the
baryon excess.Comment: 420 authors from 58 institutions, 21 pages,5 figures. Submitted to
Physics Letters B. Plain text data tables for the points plotted in figures
for this and previous PHENIX publications are (or will be) publicly available
at http://www.phenix.bnl.gov/papers.htm
- …