191 research outputs found
Prospective du métier des Acheteurs : Quels profils pour les acheteurs de demain ?
Traditionnellement, les profils des acheteurs sont déterminés en fonction du type de biens achetés et de la nature du marché fournisseurs. Or, l'acte d'achat ne se fait jamais de manière isolée puisqu'il résulte, en interne, de l'interaction de l'acheteur avec des individus issus de fonctions et de niveaux hiérarchiques variés. Ce constat, réalisé dès les années 70 en marketing industriel (Webster et Wind, 1972), est très rarement pris en compte dans la définition des profils des acheteurs. Or, il deviendra crucial à l'avenir car certaines tendances lourdes sont perceptibles tant dans les missions qui sont confiées aux acheteurs (intervention dans les équipes de conception de produits nouveaux, par exemple) que dans leur périmètre d'intervention (immixtion dans des familles achats laissées jusqu'à présent aux mains des clients internes, comme les achats d'intérims). L'objectif de cet article est d'identifier, dans une vision prospective, pourquoi et comment prendre en compte cet environnement interne dans la définition des profils des acheteurs. Dans un premier temps, les changements vécus par la fonction achats seront analysés. Dans un deuxième temps, une matrice identifiant quatre types de relations internes sera présentée en vue, dans un troisième temps, de proposer une méthodologie pour identifier les profils des acheteurs du futur.acheteur, compétence, client interne, profils, matrice achats
Twisting algebras using non-commutative torsors
Non-commutative torsors (equivalently, two-cocycles) for a Hopf algebra can
be used to twist comodule algebras. After surveying and extending the
literature on the subject, we prove a theorem that affords a presentation by
generators and relations for the algebras obtained by such twisting. We give a
number of examples, including new constructions of the quantum affine spaces
and the quantum tori.Comment: 27 pages. Masuoka is a new coauthor. Introduction was revised.
Sections 1 and 2 were thoroughly restructured. The presentation theorem in
Section 3 is now put in a more general framework and has a more general
formulation. Section 4 was shortened. All examples (quantum affine spaces and
tori, twisting of SL(2), twisting of the enveloping algebra of sl(2)) are
left unchange
N-complexes as functors, amplitude cohomology and fusion rules
We consider N-complexes as functors over an appropriate linear category in
order to show first that the Krull-Schmidt Theorem holds, then to prove that
amplitude cohomology only vanishes on injective functors providing a well
defined functor on the stable category. For left truncated N-complexes, we show
that amplitude cohomology discriminates the isomorphism class up to a
projective functor summand. Moreover amplitude cohomology of positive
N-complexes is proved to be isomorphic to an Ext functor of an indecomposable
N-complex inside the abelian functor category. Finally we show that for the
monoidal structure of N-complexes a Clebsch-Gordan formula holds, in other
words the fusion rules for N-complexes can be determined.Comment: Final versio
The K-theory of free quantum groups
In this paper we study the K -theory of free quantum groups in the sense of Wang and Van Daele, more precisely, of free products of free unitary and free orthogonal quantum groups. We show that these quantum groups are K -amenable and establish an analogue of the Pimsner–Voiculescu exact sequence. As a consequence, we obtain in particular an explicit computation of the K -theory of free quantum groups. Our approach relies on a generalization of methods from the Baum–Connes conjecture to the framework of discrete quantum groups. This is based on the categorical reformulation of the Baum–Connes conjecture developed by Meyer and Nest. As a main result we show that free quantum groups have a γ -element and that γ=1 . As an important ingredient in the proof we adapt the Dirac-dual Dirac method for groups acting on trees to the quantum case. We use this to extend some permanence properties of the Baum–Connes conjecture to our setting
Quantum Isometries of the finite noncommutative geometry of the Standard Model
We compute the quantum isometry group of the finite noncommutative geometry F
describing the internal degrees of freedom in the Standard Model of particle
physics. We show that this provides genuine quantum symmetries of the spectral
triple corresponding to M x F where M is a compact spin manifold. We also prove
that the bosonic and fermionic part of the spectral action are preserved by
these symmetries.Comment: 29 pages, no figures v3: minor change
Sequential design of computer experiments for the estimation of a probability of failure
This paper deals with the problem of estimating the volume of the excursion
set of a function above a given threshold,
under a probability measure on that is assumed to be known. In
the industrial world, this corresponds to the problem of estimating a
probability of failure of a system. When only an expensive-to-simulate model of
the system is available, the budget for simulations is usually severely limited
and therefore classical Monte Carlo methods ought to be avoided. One of the
main contributions of this article is to derive SUR (stepwise uncertainty
reduction) strategies from a Bayesian-theoretic formulation of the problem of
estimating a probability of failure. These sequential strategies use a Gaussian
process model of and aim at performing evaluations of as efficiently as
possible to infer the value of the probability of failure. We compare these
strategies to other strategies also based on a Gaussian process model for
estimating a probability of failure.Comment: This is an author-generated postprint version. The published version
is available at http://www.springerlink.co
Quantum symmetry algebras of spin systems related to Temperley-Lieb R-matrices
A reducible representation of the Temperley-Lieb algebra is constructed on
the tensor product of n-dimensional spaces. One obtains as a centraliser of
this action a quantum algebra (a quasi-triangular Hopf algebra) U_q with a
representation ring equivalent to the representation ring of the sl_2 Lie
algebra. This algebra U_q is the symmetry algebra of the corresponding open
spin chain.Comment: 14 pages LaTex; typos corrected and two references adde
Production of and mesons in UU collisions at GeV
The PHENIX experiment at the Relativistic Heavy Ion Collider measured
and mesons at midrapidity in UU collisions at
GeV in a wide transverse momentum range. Measurements were performed in the
decay modes. A strong suppression of
and meson production at high transverse momentum was observed in
central UU collisions relative to binary scaled results. Yields of
and mesons measured in UU collisions show similar suppression
pattern to the ones measured in AuAu collisions at
GeV for similar numbers of participant nucleons. The / ratios do
not show dependence on centrality or transverse momentum, and are consistent
with previously measured values in hadron-hadron, hadron-nucleus,
nucleus-nucleus, and collisions.Comment: 403 authors from 72 institutions, 13 pages, 6 figures, 7 tables, 2012
data. v2 is version accepted by Physical Review C. Plain text data tables for
the points plotted in figures for this and previous PHENIX publications are
(or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
- …