191 research outputs found

    Prospective du métier des Acheteurs : Quels profils pour les acheteurs de demain ?

    Get PDF
    Traditionnellement, les profils des acheteurs sont déterminés en fonction du type de biens achetés et de la nature du marché fournisseurs. Or, l'acte d'achat ne se fait jamais de manière isolée puisqu'il résulte, en interne, de l'interaction de l'acheteur avec des individus issus de fonctions et de niveaux hiérarchiques variés. Ce constat, réalisé dès les années 70 en marketing industriel (Webster et Wind, 1972), est très rarement pris en compte dans la définition des profils des acheteurs. Or, il deviendra crucial à l'avenir car certaines tendances lourdes sont perceptibles tant dans les missions qui sont confiées aux acheteurs (intervention dans les équipes de conception de produits nouveaux, par exemple) que dans leur périmètre d'intervention (immixtion dans des familles achats laissées jusqu'à présent aux mains des clients internes, comme les achats d'intérims). L'objectif de cet article est d'identifier, dans une vision prospective, pourquoi et comment prendre en compte cet environnement interne dans la définition des profils des acheteurs. Dans un premier temps, les changements vécus par la fonction achats seront analysés. Dans un deuxième temps, une matrice identifiant quatre types de relations internes sera présentée en vue, dans un troisième temps, de proposer une méthodologie pour identifier les profils des acheteurs du futur.acheteur, compétence, client interne, profils, matrice achats

    Twisting algebras using non-commutative torsors

    Full text link
    Non-commutative torsors (equivalently, two-cocycles) for a Hopf algebra can be used to twist comodule algebras. After surveying and extending the literature on the subject, we prove a theorem that affords a presentation by generators and relations for the algebras obtained by such twisting. We give a number of examples, including new constructions of the quantum affine spaces and the quantum tori.Comment: 27 pages. Masuoka is a new coauthor. Introduction was revised. Sections 1 and 2 were thoroughly restructured. The presentation theorem in Section 3 is now put in a more general framework and has a more general formulation. Section 4 was shortened. All examples (quantum affine spaces and tori, twisting of SL(2), twisting of the enveloping algebra of sl(2)) are left unchange

    N-complexes as functors, amplitude cohomology and fusion rules

    Get PDF
    We consider N-complexes as functors over an appropriate linear category in order to show first that the Krull-Schmidt Theorem holds, then to prove that amplitude cohomology only vanishes on injective functors providing a well defined functor on the stable category. For left truncated N-complexes, we show that amplitude cohomology discriminates the isomorphism class up to a projective functor summand. Moreover amplitude cohomology of positive N-complexes is proved to be isomorphic to an Ext functor of an indecomposable N-complex inside the abelian functor category. Finally we show that for the monoidal structure of N-complexes a Clebsch-Gordan formula holds, in other words the fusion rules for N-complexes can be determined.Comment: Final versio

    The K-theory of free quantum groups

    Get PDF
    In this paper we study the K -theory of free quantum groups in the sense of Wang and Van Daele, more precisely, of free products of free unitary and free orthogonal quantum groups. We show that these quantum groups are K -amenable and establish an analogue of the Pimsner–Voiculescu exact sequence. As a consequence, we obtain in particular an explicit computation of the K -theory of free quantum groups. Our approach relies on a generalization of methods from the Baum–Connes conjecture to the framework of discrete quantum groups. This is based on the categorical reformulation of the Baum–Connes conjecture developed by Meyer and Nest. As a main result we show that free quantum groups have a γ -element and that γ=1 . As an important ingredient in the proof we adapt the Dirac-dual Dirac method for groups acting on trees to the quantum case. We use this to extend some permanence properties of the Baum–Connes conjecture to our setting

    Quantum Isometries of the finite noncommutative geometry of the Standard Model

    Full text link
    We compute the quantum isometry group of the finite noncommutative geometry F describing the internal degrees of freedom in the Standard Model of particle physics. We show that this provides genuine quantum symmetries of the spectral triple corresponding to M x F where M is a compact spin manifold. We also prove that the bosonic and fermionic part of the spectral action are preserved by these symmetries.Comment: 29 pages, no figures v3: minor change

    Sequential design of computer experiments for the estimation of a probability of failure

    Full text link
    This paper deals with the problem of estimating the volume of the excursion set of a function f:RdRf:\mathbb{R}^d \to \mathbb{R} above a given threshold, under a probability measure on Rd\mathbb{R}^d that is assumed to be known. In the industrial world, this corresponds to the problem of estimating a probability of failure of a system. When only an expensive-to-simulate model of the system is available, the budget for simulations is usually severely limited and therefore classical Monte Carlo methods ought to be avoided. One of the main contributions of this article is to derive SUR (stepwise uncertainty reduction) strategies from a Bayesian-theoretic formulation of the problem of estimating a probability of failure. These sequential strategies use a Gaussian process model of ff and aim at performing evaluations of ff as efficiently as possible to infer the value of the probability of failure. We compare these strategies to other strategies also based on a Gaussian process model for estimating a probability of failure.Comment: This is an author-generated postprint version. The published version is available at http://www.springerlink.co

    Quantum symmetry algebras of spin systems related to Temperley-Lieb R-matrices

    Full text link
    A reducible representation of the Temperley-Lieb algebra is constructed on the tensor product of n-dimensional spaces. One obtains as a centraliser of this action a quantum algebra (a quasi-triangular Hopf algebra) U_q with a representation ring equivalent to the representation ring of the sl_2 Lie algebra. This algebra U_q is the symmetry algebra of the corresponding open spin chain.Comment: 14 pages LaTex; typos corrected and two references adde

    Production of π0\pi^0 and η\eta mesons in U++U collisions at sNN=192\sqrt{s_{_{NN}}}=192 GeV

    Full text link
    The PHENIX experiment at the Relativistic Heavy Ion Collider measured π0\pi^0 and η\eta mesons at midrapidity in U++U collisions at sNN=192\sqrt{s_{_{NN}}}=192 GeV in a wide transverse momentum range. Measurements were performed in the π0(η)γγ\pi^0(\eta)\rightarrow\gamma\gamma decay modes. A strong suppression of π0\pi^0 and η\eta meson production at high transverse momentum was observed in central U++U collisions relative to binary scaled pp++pp results. Yields of π0\pi^0 and η\eta mesons measured in U++U collisions show similar suppression pattern to the ones measured in Au++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV for similar numbers of participant nucleons. The η\eta/π0\pi^0 ratios do not show dependence on centrality or transverse momentum, and are consistent with previously measured values in hadron-hadron, hadron-nucleus, nucleus-nucleus, and e+ee^+e^- collisions.Comment: 403 authors from 72 institutions, 13 pages, 6 figures, 7 tables, 2012 data. v2 is version accepted by Physical Review C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore