2 research outputs found

    Modeling and simulation of intermittent arc effects on traveling wave based fault location techniques for distribution network

    Get PDF
    With rapidly developing of the distribution networks the rate of the earth fault increases sharply. Aiming to fault location for distribution networks, many techniques are proposed and applied in distribution networks throughout the world. However, until now the technology for precise fault point location has not been successfully implemented in engineering practice. Traveling wave based methods as common techniques are widely applied in transmission line protection for locating fault point. However, these methods face severe challenge in fault location for distribution networks. The main reason is that the intermittent arc fault easily results in failure of detecting inceptive travelling wave and this intermittent arc is a common earth fault in distribution networks compared with transmission networks. In this paper, a simplified distribution line is built by making reference to the two parallel lossless transmission lines system. Then, the intermittent arc effects on traveling wave based method are modeled and discussed. Finally, the reason why these travelling wave based methods are hard to locate fault point precisely is illustrated

    Analysis of traveling wave based fault location method for distribution network with image processing

    Get PDF
    Laws of traveling wave data related to fault location for medium voltage distribution network are discussed and summarized. Given the tree structure of a distribution network, an image of nodes voltage is created combining the use of real-time traveling wave meters at all nodes of the tree. The novelty of this paper is that travelling wavefront are analyzed based on the dynamic changes of these images. Based on principle of the traditional fault location with traveling wave-based method for transmission networks, traveling wave data of fault location for medium voltage distribution networks are plotted in order to estimate propagation velocity and distance between the fault position and the reference node. The results indicate that taking advantage of the laws of data related to first wave front can improve the reliability of the fault location for medium voltage networks
    corecore