31 research outputs found

    On Lions and Elligators: An efficient constant-time implementation of CSIDH

    Get PDF
    The recently proposed CSIDH primitive is a promising candidate for post quantum static-static key exchanges with very small keys. However, until now there is only a variable-time proof-of-concept implementation by Castryck, Lange, Martindale, Panny, and Renes, recently optimized by Meyer and Reith, which can leak various information about the private key. Therefore, we present an efficient constant-time implementation that samples key elements only from intervals of nonnegative numbers and uses dummy isogenies, which prevents certain kinds of side-channel attacks. We apply several optimizations, e.g. Elligator and the newly introduced SIMBA, in order to get a more efficient implementation

    On the statistical leak of the GGH13 multilinear map and some variants

    Get PDF
    At EUROCRYPT 2013, Garg, Gentry and Halevi proposed a candidate construction (later referred as GGH13) of cryptographic multilinear map (MMap). Despite weaknesses uncovered by Hu and Jia (EUROCRYPT 2016), this candidate is still used for designing obfuscators.The naive version of the GGH13 scheme was deemed susceptible to averaging attacks, i.e., it could suffer from a statistical leak (yet no precise attack was described). A variant was therefore devised, but it remains heuristic. Recently, to obtain MMaps with low noise and modulus, two variants of this countermeasure were developed by Döttling et al. (EPRINT:2016/599).In this work, we propose a systematic study of this statistical leakage for all these GGH13 variants. In particular, we confirm the weakness of the naive version o

    Supersingular isogeny graphs and endomorphism rings:reductions and solutions

    Get PDF
    In this paper, we study several related computational problems for supersingular elliptic curves, their isogeny graphs, and their endomorphism rings. We prove reductions between the problem of path finding in the -isogeny graph, computing maximal orders isomorphic to the endomorphism ring of a supersingular elliptic curve, and computing the endomorphism ring itself. We also give constructive versions of Deuring’s correspondence, which associates to a maximal order in a certain quaternion algebra an isomorphism class of supersingular elliptic curves. The reductions are based on heuristics regarding the distribution of norms of elements in quaternion algebras. We show that conjugacy classes of maximal orders have a representative of polynomial size, and we define a way to represent endomorphism ring generators in a way that allows for efficient evaluation at points on the curve. We relate these problems to the security of the Charles-Goren-Lauter hash function. We provide a collision attack for special but natural parameters of the hash function and prove that for general parameters its preimage and collision resistance are also equivalent to the endomorphism ring computation problem.SCOPUS: cp.kinfo:eu-repo/semantics/published37th Annual International Conference on the Theory and Applications of Cryptographic Techniques, EUROCRYPT 2018; Tel Aviv; Israel; 29 April 2018 through 3 May 2018ISBN: 978-331978371-0Volume Editors: Nielsen J.B.Rijmen V.Publisher: Springer Verla

    Quantum cryptanalysis in the RAM model: Claw-finding attacks on SIKE

    Get PDF
    We introduce models of computation that enable direct comparisons between classical and quantum algorithms. Incorporating previous work on quantum computation and error correction, we justify the use of the gate-count and depth-times-width cost metrics for quantum circuits. We demonstrate the relevance of these models to cryptanalysis by revisiting, and increasing, the security estimates for the Supersingular Isogeny Diffie--Hellman (SIDH) and Supersingular Isogeny Key Encapsulation (SIKE) schemes. Our models, analyses, and physical justifications have applications to a number of memory intensive quantum algorithms

    Threshold Schemes from Isogeny Assumptions

    Get PDF
    We initiate the study of threshold schemes based on the Hard Homogeneous Spaces (HHS) framework of Couveignes. Quantum-resistant HHS based on supersingular isogeny graphs have recently become usable thanks to the record class group precomputation performed for the signature scheme CSI-FiSh. Using the HHS equivalent of the technique of Shamir\u27s secret sharing in the exponents, we adapt isogeny based schemes to the threshold setting. In particular we present threshold versions of the CSIDH public key encryption, and the CSI-FiSh signature schemes. The main highlight is a threshold version of CSI-FiSh which runs almost as fast as the original scheme, for message sizes as low as 1880 B, public key sizes as low as 128 B, and thresholds up to 56; other speed-size-threshold compromises are possible

    B-SIDH: supersingular isogeny Diffie-Hellman using twisted torsion

    Get PDF
    This paper explores a new way of instantiating isogeny-based cryptography in which parties can work in both the (p+1)-torsion of a set of supersingular curves and in the (p-1)-torsion corresponding to the set of their quadratic twists. Although the isomorphism between a given supersingular curve and its quadratic twist is not defined over GF(p^2) in general, restricting operations to the x-lines of both sets of twists allows all arithmetic to be carried out over GF(p^2) as usual. Furthermore, since supersingular twists always have the same GF(p^2)-rational j-invariant, the SIDH protocol remains unchanged when Alice and Bob are free to work in both sets of twists. This framework lifts the restrictions on the shapes of the underlying prime fields originally imposed by Jao and De Feo, and allows a range of new options for instantiating isogeny-based public key cryptography. These include alternatives that exploit Mersenne and Montgomery-friendly primes, as well as the possibility of significantly reducing the size of the primes in the Jao-De Feo construction at no known loss of asymptotic security. For a given target security level, the resulting public keys are smaller than the public keys of all of the key encapsulation schemes currently under consideration in the NIST post-quantum standardisation effort. The best known attacks against the instantiations proposed in this paper are the classical path finding algorithm due to Delfs and Galbraith and its quantum adapation due to Biasse, Jao and Sankar; these run in respective time O(p^(1/2)) and O(p^(1/4)), and are essentially memory-free. The upshot is that removing the big-O\u27s and obtaining concrete security estimates is a matter of costing the circuits needed to implement the corresponding isogeny. In contrast to other post-quantum proposals, this makes the security analysis of B-SIDH rather straightforward. Searches for friendly parameters are used to find several primes that range from 237 to 256 bits, the conjectured security of which are comparable to the 434-bit prime used to target NIST level 1 security in the SIKE proposal. One noteworthy example is a 247-bit prime for which Alice\u27s secret isogeny is 7901-smooth and Bob\u27s secret isogeny is 7621-smooth
    corecore