572 research outputs found

    Twisted and Nontwisted Bifurcations Induced by Diffusion

    Full text link
    We discuss a diffusively perturbed predator-prey system. Freedman and Wolkowicz showed that the corresponding ODE can have a periodic solution that bifurcates from a homoclinic loop. When the diffusion coefficients are large, this solution represents a stable, spatially homogeneous time-periodic solution of the PDE. We show that when the diffusion coefficients become small, the spatially homogeneous periodic solution becomes unstable and bifurcates into spatially nonhomogeneous periodic solutions. The nature of the bifurcation is determined by the twistedness of an equilibrium/homoclinic bifurcation that occurs as the diffusion coefficients decrease. In the nontwisted case two spatially nonhomogeneous simple periodic solutions of equal period are generated, while in the twisted case a unique spatially nonhomogeneous double periodic solution is generated through period-doubling. Key Words: Reaction-diffusion equations; predator-prey systems; homoclinic bifurcations; periodic solutions.Comment: 42 pages in a tar.gz file. Use ``latex2e twisted.tex'' on the tex files. Hard copy of figures available on request from [email protected]

    Surface Geometric and Electronic Structure of BaFe2As2(001)

    Full text link
    BaFe2As2 exhibits properties characteristic of the parent compounds of the newly discovered iron (Fe)-based high-TC superconductors. By combining the real space imaging of scanning tunneling microscopy/spectroscopy (STM/S) with momentum space quantitative Low Energy Electron Diffraction (LEED) we have identified the surface plane of cleaved BaFe2As2 crystals as the As terminated Fe-As layer - the plane where superconductivity occurs. LEED and STM/S data on the BaFe2As2(001) surface indicate an ordered arsenic (As) - terminated metallic surface without reconstruction or lattice distortion. It is surprising that the STM images the different Fe-As orbitals associated with the orthorhombic structure, not the As atoms in the surface plane.Comment: 12 pages, 4 figure

    Landauer transport model for Hawking radiation from a Reissner-Nordstrom black hole

    Full text link
    The recent work of Nation et al in which Hawking radiation energy and entropy flow from a black hole can be regarded as a one-dimensional (1D) Landauer transport process is extended to the case of a Reissner-Nordstrom (RN) black hole. It is found that the flow of charge current can also be transported via a 1D quantum channel except the current of Hawking radiation. The maximum entropy current, which is shown to be particle statistics independence, is also obtained

    Time-Dependent Spintronic Transport and Current-Induced Spin Transfer Torque in Magnetic Tunnel Junctions

    Full text link
    The responses of the electrical current and the current-induced spin transfer torque (CISTT) to an ac bias in addition to a dc bias in a magnetic tunnel junction are investigated by means of the time-dependent nonquilibrium Green function technique. The time-averaged current (time-averaged CISTT) is formulated in the form of a summation of dc current (dc CISTT) multiplied by products of Bessel functions with the energy levels shifted by mω0m\hbar \omega _{0}. The tunneling current can be viewed as to happen between the photonic sidebands of the two ferromagnets. The electrons can pass through the barrier easily under high frequencies but difficultly under low frequencies. The tunnel magnetoresistance almost does not vary with an ac field. It is found that the spin transfer torque, still being proportional to the electrical current under an ac bias, can be changed by varying frequency. Low frequencies could yield a rapid decrease of the spin transfer torque, while a large ac signal leads to both decrease of the electrical current and the spin torque. If only an ac bias is present, the spin transfer torque is sharply enhanced at the particular amplitude and frequency of the ac bias. A nearly linear relation between such an amplitude and frequency is observed.Comment: 13 pages,8 figure

    Distorted wave impulse approximation analysis for spin observables in nucleon quasi-elastic scattering and enhancement of the spin-longitudinal response

    Full text link
    We present a formalism of distorted wave impulse approximation (DWIA) for analyzing spin observables in nucleon inelastic and charge exchange reactions leading to the continuum. It utilizes response functions calculated by the continuum random phase approximation (RPA), which include the effective mass, the spreading widths and the \Delta degrees of freedom. The Fermi motion is treated by the optimal factorization, and the non-locality of the nucleon-nucleon t-matrix by an averaged reaction plane approximation. By using the formalism we calculated the spin-longitudinal and the spin-transverse cross sections, ID_q and ID_p, of 12C, 40Ca (\vec{p},\vec{n}) at 494 and 346 MeV. The calculation reasonably reproduced the observed ID_q, which is consistent with the predicted enhancement of the spin-longitudinal response function R_L. However, the observed ID_p is much larger than the calculated one, which was consistent with neither the predicted quenching nor the spin-transverse response function R_T obtained by the (e,e') scattering. The Landau-Migdal parameter g'_N\Delta for the N\Delta transition interaction and the effective mass at the nuclear center m^*(r=0) are treated as adjustable parameters. The present analysis indicates that the smaller g'_{N\Delta}(\approx 0.3) and m^*(0) \approx 0.7 m are preferable. We also investigate the validity of the plane wave impulse approximation (PWIA) with the effective nucleon number approximation for the absorption, by means of which R_L and R_T have conventionally been extracted.Comment: RevTex 3, 29 pages, 2 tables, 8 figure
    corecore