1,454 research outputs found
Regret Bounds for Reinforcement Learning with Policy Advice
In some reinforcement learning problems an agent may be provided with a set
of input policies, perhaps learned from prior experience or provided by
advisors. We present a reinforcement learning with policy advice (RLPA)
algorithm which leverages this input set and learns to use the best policy in
the set for the reinforcement learning task at hand. We prove that RLPA has a
sub-linear regret of \tilde O(\sqrt{T}) relative to the best input policy, and
that both this regret and its computational complexity are independent of the
size of the state and action space. Our empirical simulations support our
theoretical analysis. This suggests RLPA may offer significant advantages in
large domains where some prior good policies are provided
Shear-promoted drug encapsulation into red blood cells: a CFD model and μ-PIV analysis
The present work focuses on the main parameters that influence shear-promoted encapsulation of drugs into erythrocytes. A CFD model was built to investigate the fluid dynamics of a suspension of particles flowing in a commercial micro channel. Micro Particle Image Velocimetry (μ-PIV) allowed to take into account for the real properties of the red blood cell (RBC), thus having a deeper understanding of the process. Coupling these results with an analytical diffusion model, suitable working conditions were defined for different values of haematocrit
Artificial neural network analysis of bone quality DXA parameters response to teriparatide in fractured osteoporotic patients
Teriparatide is a bone-forming therapy for osteoporosis that increases bone quantity and texture, with uncertain action on bone geometry. No data are available regarding its influence on bone strain. To investigate teriparatide action on parameters of bone quantity and quality and on Bone Strain Index (BSI), also derived from DXA lumbar scan, based on the mathematical model finite element method. Forty osteoporotic patients with fractures were studied before and after two years of daily subcutaneous 20 mcg of teriparatide with dual X-ray photon absorptiometry to assess bone mineral density (BMD), hip structural analysis (HSA), trabecular bone score (TBS), BSI. Spine deformity index (SDI) was calculated from spine X-ray. Shapiro-Wilks, Wilcoxon and Student's t test were used for classical statistical analysis. Auto Contractive Map was used for Artificial Neural Network Analysis (ANNs). In the entire population, the ameliorations after therapy regarded BSI (-13.9%), TBS (5.08%), BMD (8.36%). HSA parameters of femoral shaft showed a worsening. Dividing patients into responders (BMD increase >10%) and non-responders, the first presented TBS and BSI ameliorations (11.87% and -25.46%, respectively). Non-responders presented an amelioration of BSI only, but less than in the other subgroup (-6.57%). ANNs maps reflect the mentioned bone quality improvements. Teriparatide appears to ameliorate not only BMD and TBS, but also BSI, suggesting an increase of bone strength that may explain the known reduction in fracture risk, not simply justified by BMD increase. BSI appears to be a sensitive index of TPD effect. ANNs appears to be a valid tool to investigate complex clinical systems
Identification of a 2-propanol analogue modulating the non-enzymatic function of indoleamine 2,3-dioxygenase 1
Abstract Indoleamine 2,3 dioxygenase 1 (IDO1) is a metabolic enzyme that catalyzes the conversion of the essential amino acid tryptophan (Trp) into a series of immunoactive catabolites, collectively known as kynurenines. Through the depletion of Trp and the generation of kynurenines, IDO1 represents a key regulator of the immune responses involved in physiologic homeostasis as well as in neoplastic and autoimmune pathologies. The IDO1 enzyme has been described as an important immune checkpoint to be targeted by catalytic inhibitors in the treatment of cancer. In contrast, a defective expression/activity of the enzyme has been demonstrated in autoimmune diseases. Beside its catalytic activity, the IDO1 protein is endowed with an additional function associated with the presence of two immunoreceptor tyrosine-based inhibitory motifs (ITIMs), which, once phosphorylated, bind SHP phosphatases and mediate a long-term immunoregulatory activity of IDO1. Herein, we report the screening of a focused library of molecules bearing a propanol core by a protocol combining microscale thermophoresis (MST) analysis and a cellular assay. As a result, the combined screening identified a 2-propanolol analogue, VIS351, as the first potent activator of the ITIM-mediated function of the IDO1 enzyme. VIS351 displayed a good dissociation constant (Kd = 1.90 μM) for IDO1 and a moderate cellular inhibitor activity (IC50 = 11.463 μM), although it did not show any catalytic inhibition of the recombinant IDO1 enzyme. Because we previously demonstrated that the enzymatic and non-enzymatic (i.e., ITIM-mediated) functions of IDO1 reside in different conformations of the protein, we hypothesized that in the cellular system VIS351 may shift the dynamic conformational balance towards the ITIM-favoring folding of IDO1, resulting in the activation of the signaling rather than catalytic activity of IDO1. We demonstrated that VIS351 activated the ITIM-mediated signaling of IDO1 also in mouse plasmacytoid dendritic cells, conferring those cells an immunosuppressive phenotype detectable in vivo. Thus the manuscript describes for the first time a small molecule as a positive modulator of IDO1 signaling function, paving the basis for an innovative approach to develop first-in-class drugs acting on the IDO1 target
Tracing the evolution of nearby early-type galaxies in low density environments. The Ultraviolet view from GALEX
We detected recent star formation in nearby early-type galaxies located in
low density environments, with GALEX Ultraviolet (UV) imaging. Signatures of
star formation may be present in the nucleus and in outer rings/arm like
structures. Our study suggests that such star formation may be induced by
different triggering mechanisms, such as the inner secular evolution driven by
bars, and minor accretion phenomena. We investigate the nature of the (FUV-NUV)
color vs. Mg2 correlation, and suggest that it relates to "downsizing" in
galaxy formation.Comment: Conference "UV Universe 2010" S. Petersburg 31 May - 3 June, 2010
Accepted for publication in Astrophysics & Space Science . The final
publication is available at http://www.springerlink.co
Italian guidelines for the diagnosis and treatment of Paget's disease of bone
Paget's disease of bone is a chronic focal abnormality of bone turnover that remains totally asymptomatic over a very long period of time but that eventually ensue in bone pain and skeletal deformities. Although, in the last decade new insights have been obtained on its etiology, this remains largely obscure. Effective medical treatment (based on the use of bisphosphonates) has become available and the diagnostic procedures are now well defined. However, there remains considerable controversy regarding the hierarchy of diagnostic procedures and the medical treatment threshold. In the last few years different institution have published national guidelines, reflecting local national health systems and the available medical treatment. In this review, a working group derived from members of the SIOMMMS has examined the information available regarding the diagnosis and treatment of Paget's disease in order to develop guidelines to assist in the management of this condition. The first draft was then extensively reviewed by experts derived from the most representative scientific societies of rheumatology, internal medicine, and orthopaedic surgery. The document provides the most updated recommendations based primarily on the "evidence-based- medicine" but also on the Italian regulation for the diagnostic procedures and on the available medical treatments
Hominin-specific regulatory elements selectively emerged in oligodendrocytes and are disrupted in autism patients
Speciation is associated with substantial rewiring of the regulatory circuitry underlying the expression of genes. Determining which changes are relevant and underlie the emergence of the human brain or its unique susceptibility to neural disease has been challenging. Here we annotate changes to gene regulatory elements (GREs) at cell type resolution in the brains of multiple primate species spanning most of primate evolution. We identify a unique set of regulatory elements that emerged in hominins prior to the separation of humans and chimpanzees. We demonstrate that these hominin gains perferentially affect oligodendrocyte function postnatally and are preferentially affected in the brains of autism patients. This preference is also observed for human-specific GREs suggesting this system is under continued selective pressure. Our data provide a roadmap of regulatory rewiring across primate evolution providing insight into the genomic changes that underlie the emergence of the brain and its susceptibility to neural disease
- …