5 research outputs found

    Anti-tumour activity of Panobinostat in oesophageal adenocarcinoma and squamous cell carcinoma cell lines

    No full text
    Abstract Background Oesophageal cancer remains a challenging disease with high mortality rates and few therapeutic options. In view of these difficulties, epigenetic drugs have emerged as potential alternatives for patient care. The goal of this study was to evaluate the effect and biological consequences of Panobinostat treatment, an HDAC (histone deacetylase) inhibitor already approved for treatment of patients with multiple myeloma, in oesophageal cell lines of normal and malignant origin, with the latter being representative of the two main histological subtypes: adenocarcinoma and squamous cell carcinoma. Results Panobinostat treatment inhibited growth and hindered proliferation, colony formation and invasion of oesophageal cancer cells. Considering HDAC tissue expression, HDAC1 was significantly upregulated in normal oesophageal epithelium in comparison with tumour tissue, whereas HDAC3 was overexpressed in oesophageal cancer compared to non-malignant mucosa. No differences between normal and tumour tissue were observed for HDAC2 and HDAC8 expression. Conclusions Panobinostat exposure effectively impaired malignant features of oesophageal cancer cells. Because HDAC3 was shown to be overexpressed in oesophageal tumour samples, this epigenetic drug may represent an alternative therapeutic option for oesophageal cancer patients

    Molecular and Kinetic Analyses of Circulating Tumor Cells as Predictive Markers of Treatment Response in Locally Advanced Rectal Cancer Patients

    No full text
    Neoadjuvant chemoradiation (NCRT) followed by total mesorectal excision is the standard treatment for locally advanced rectal cancer (LARC). To justify a non-surgical approach, identification of pathologic complete response (pCR) is required. Analysis of circulating tumor cells (CTCs) can be used to evaluate pCR. We hypothesize that monitoring of thymidylate synthase (TYMS) and excision repair protein, RAD23 homolog B (RAD23B), can be used to predict resistance to chemotherapy/radiotherapy. Therefore, the aims of this study were to analyze CTCs from patients with LARC who underwent NCRT plus surgery for expression of TYMS/RAD23B and to evaluate their predictive value. Blood samples from 30 patients were collected prior to NCRT (S1) and prior to surgery (S2). CTCs were isolated and quantified by ISET®, proteins were analyzed by immunocytochemistry, and TYMS mRNA was detected by chromogenic in situ hybridization. CTC counts decreased between S1 and S2 in patients exhibiting pCR (p = 0.02) or partial response (p = 0.01). Regarding protein expression, TYMS was absent in 100% of CTCs from patients with pCR (p = 0.001) yet was expressed in 83% of non-responders at S2 (p < 0.001). Meanwhile, RAD23B was expressed in CTCs from 75% of non-responders at S1 (p = 0.01) and in 100% of non-responders at S2 (p = 0.001). Surprisingly, 100% of non-responders expressed TYMS mRNA at both timepoints (p = 0.001). In addition, TYMS/RAD23B was not detected in the CTCs of patients exhibiting pCR (p = 0.001). We found 83.3% of sensitivity for TYMS mRNA at S1 (p = 0.001) and 100% for TYMS (p = 0.064) and RAD23B (p = 0.01) protein expression at S2. Thus, TYMS mRNA and/or TYMS/RAD23B expression in CTCs, as well as CTC kinetics, have the potential to predict non-response to NCRT and avoid unnecessary radical surgery for LARC patients with pCR

    DNA methylation-based depiction of the immune microenvironment and immune-associated long non-coding RNAs in oral cavity squamous cell carcinomas

    No full text
    Oral cavity squamous cell carcinoma (OSCC) is a complex and dynamic disease characterized by clinicopathological and molecular heterogeneity. Spatial and temporal heterogeneity of cell subpopulations has been associated with cancer progression and implicated in the prognosis and therapy response. Emerging evidence indicates that aberrant epigenetic profiles in OSCC may foster an immunosuppressive tumor microenvironment by modulating the expression of immune-related long non-coding RNAs (lncRNAs). DNA methylation analysis was performed in 46 matched OSCC and normal adjacent tissue samples using a genome-wide platform (Infinium HumanMethylation450 BeadChip). Reference-based computational deconvolution (MethylCIBERSORT) was applied to infer the immune cell composition of the bulk samples. The expression levels of genes encoding immune markers and differentially methylated lncRNAs were investigated using The Cancer Genome Atlas dataset. OSCC specimens presented distinct immune cell composition, including the enrichment of monocyte lineage cells, natural killer cells, cytotoxic T-lymphocytes, regulatory T-lymphocytes, and neutrophils. In contrast, B-lymphocytes, effector T-lymphocytes, and fibroblasts were diminished in tumor samples. The hypomethylation of three immune-associated lncRNAs (MEG3, MIR155HG, and WFDC21P) at individual CpG sites was confirmed by bisulfite-pyrosequencing. Also, the upregulation of a set of immune markers (FOXP3, GZMB, IL10, IL2RA, TGFB, IFNG, TDO2, IDO1, and HIF1A) was detected. The immune cell composition, immune markers alteration, and dysregulation of immune-associated lncRNAs reinforce the impact of the immune microenvironment in OSCC. These concurrent factors contribute to tumor heterogeneity, suggesting that epi-immunotherapy could be an efficient alternative to treat OSCC

    Molecular and Dynamic Evaluation of Proteins Related to Resistance to Neoadjuvant Treatment with Chemoradiotherapy in Circulating Tumor Cells of Patients with Locally Advanced Rectal Cancer

    No full text
    The heterogeneity of response to neoadjuvant chemoradiotherapy (NCRT) is still a challenge in locally advanced rectal cancer (LARC). The evaluation of thymidylate synthase (TYMS) and RAD23 homolog B (RAD23B) expression in circulating tumor cells (CTCs) provides complementary clinical information. CTCs were prospectively evaluated in 166 blood samples (63 patients) with LARC undergoing NCRT. The primary objective was to verify if the absence of RAD23B/TYMS in CTCs would correlate with pathological complete response (pCR). Secondary objectives were to correlate CTC kinetics before (C1)/after NCRT (C2), in addition to the expression of transforming growth factor-β receptor I (TGF-βRI) with survival rates. CTCs were isolated by ISET and evaluated by immunocytochemistry (protein expression). At C1, RAD23B was detected in 54.1% of patients with no pCR and its absence in 91.7% of patients with pCR (p = 0.014); TYMS− was observed in 90% of patients with pCR and TYMS+ in 51.7% without pCR (p = 0.057). Patients with CTC2 > CTC1 had worse disease-free survival (DFS) (p = 0.00025) and overall survival (OS) (p = 0.0036) compared with those with CTC2 ≤ CTC1. TGF-βRI expression in any time correlated with worse DFS (p = 0.059). To conclude, RAD23B/TYMS and CTC kinetics may facilitate the personalized treatment of LARC
    corecore