15 research outputs found

    Coexpression of PD-1, 2B4, CD160 and KLRG1 on exhausted HCV-specific CD8+ T cells is linked to antigen recognition and T cell differentiation.

    Get PDF
    Exhausted CD8+ T cell responses during chronic viral infections are defined by a complex expression pattern of inhibitory receptors. However, very little information is currently available about the coexpression patterns of these receptors on human virus-specific CD8+ T cells and their correlation with antiviral functions, T cell differentiation and antigen recognition. We addressed these important aspects in a cohort of 38 chronically HCV infected patients and found a coexpression of inhibitory receptors such as 2B4, CD160 and KLRG1 in association with PD-1 in about half of the HCV-specific CD8+ T cell responses. Importantly, this exhaustive phenotype was associated with low and intermediate levels of CD127 expression, an impaired proliferative capacity, an intermediate T cell differentiation stage and absence of sequence variations within the corresponding epitopes, indicating ongoing antigen triggering. In contrast, a low expression of inhibitory receptors by the remaining HCV-specific CD8+ T cells occurred in concert with a CD127hi phenotype, an early T cell differentiation stage and presence of viral sequence variations within the corresponding epitopes. In sum, these results suggest that T cell exhaustion contributes to the failure of about half of HCV-specific CD8+ T cell responses and that it is determined by a complex interplay of immunological (e.g. T cell differentiation) and virological (e.g. ongoing antigen triggering) factors

    Determinants of in vitro expansion of different human virus-specific FoxP3+ regulatory CD8+ T cells in chronic hepatitis C virus infection

    No full text
    It has been shown previously that suppressive virus-specific FoxP3+ regulatory CD8+ T cells can be expanded from human peripheral blood mononuclear cells after in vitro antigen-specific stimulation. This study extended this finding by analysing the mechanisms of virus-specific FoxP3+ regulatory CD8+ T-cell generation during peptide-specific expansion in vitro. It was shown that hepatitis C virus (HCV)-, influenza virus (FLU)-, Epstein–Barr virus (EBV)- and cytomegalovirus (HCMV)-specific FoxP3+ regulatory CD8+ T cells could be expanded differentially from the blood of chronically HCV-infected patients following in vitro peptide-specific stimulation. The different ability of virus-specific CD8+ T-cell populations to express FoxP3 after continuous antigen stimulation in vitro correlated significantly with the ex vivo differentiation status. Indeed, CD27+ CD28+ CD57− HCV-, FLU- and EBV-specific CD8+ T cells displayed a significantly higher ability to give rise to FoxP3+ regulatory CD8+ T cells compared with CD27− CD28− CD57+ HCMV-specific CD8+ T cells. Similar T-cell receptor expression patterns of FoxP3+ versus FoxP3− CD8+ T cells of the same antigen specificity indicated that both cell populations were probably expanded from the same virus-specific CD8+ T-cell precursor. In addition, no specific antigen-presenting cell populations were required for the generation of FoxP3+ CD8+ T cells, as CD8+-selected virus-specific FoxP3+ CD8+ T cells could be expanded by peptide presentation in the absence of antigen-presenting cells. Taken together, these results suggest that the ability to expand FoxP3+ regulatory CD8+ T cells from virus-specific CD8+ T cells differs among distinct virus-specific CD8+ T-cell populations depending on the differentiation status

    Translation, terminology and style in philosophical discourse

    No full text

    Logic and language: Humanistic logic

    No full text

    Frontmatter

    No full text

    Introduction

    No full text
    corecore