1,581 research outputs found

    Prospects for Triple Gauge Coupling Measurements at Future Lepton Colliders and the 14 TeV LHC

    Full text link
    The WWWW production is the primary channel to directly probe the triple gauge couplings. We first analyze the e+e−→W+W−e^+ e^- \rightarrow W^+ W^- process at the future lepton collider, China's proposed Circular Electron-Positron Collider (CEPC). We use the five kinematical angles in this process to constrain the anomalous triple gauge couplings and relevant dimension six operators at the CEPC up to the order of magnitude of 10−410^{-4}. The most sensible information is obtained from the distributions of the production scattering angle and the decay azimuthal angles. We also estimate constraints at the 14 TeV LHC, with both 300 fb−1^{-1} and 3000 fb−1^{-1} integrated luminosity from the leading lepton pTp_T and azimuthal angle difference Δϕll\Delta \phi_{ll} distributions in the di-lepton channel. The constrain is somewhat weaker, up to the order of magnitude of 10−310^{-3}. The limits on the triple gauge couplings are complementary to those on the electroweak precision observables and Higgs couplings. Our results show that the gap between sensitivities of the electroweak and triple gauge boson precision can be significantly decreased to less than one order of magnitude at the 14 TeV LHC, and that both the two sensitivities can be further improved at the CEPC.Comment: 36 pages, 5 figures, 8 tables, version to appear in JHE

    Type-III two Higgs doublet model plus a pseudoscalar confronted with h→μτh\rightarrow\mu\tau, muon g−2g-2 and dark matter

    Get PDF
    In this work, we introduce an extra singlet pseudoscalar into the Type-III two Higgs doublet model (2HDM) which is supposed to solve a series of problems in the modern particle-cosmology. With existence of a light pseudoscalar, the h→μτh\rightarrow\mu\tau excess measured at CMS and as well as the (g−2)μ(g-2)_{\mu} anomaly could be simultaneously explained within certain parameter spaces that can also tolerate the data on the flavor-violating processes τ→μγ\tau\rightarrow\mu\gamma and Higgs decay gained at LHC. Within the same parameter spaces, the DM relic abundance is well accounted. Moreover, the recently observed Galactic Center gamma ray excess(GCE) is proposed to realize through dark matter(DM) pair annihilations, and in this work, the scenario of the annihilation being mediated by the pseudoscalar is also addressed.Comment: 14 pages, 8 figures, version to appear in NP

    Two component dark matter with multi-Higgs portals

    Full text link
    With the assistance of two extra groups, i.e., an extra hidden gauge group SU(2)DSU(2)_D and a global U(1)U(1) group, we propose a two component dark matter (DM) model. After the symmetry SU(2)D×U(1)SU(2)_D\times U(1) being broken, we obtain both the vector and scalar DM candidates. The two DM candidates communicate with the standard model (SM) via three Higgs as multi-Higgs portals. The three Higgs are mixing states of the SM Higgs, the Higgs of the hidden sector and real part of a supplement complex scalar singlet. We study relic density and direct detection of DM in three scenarios. The resonance behaviors and interplay between the two component DM candidates are represented through investigating of the relic density in the parameter spaces of the two DMs masses. The electroweak precision parameters constrains the two Higgs portals couplings (λm\lambda_m and δ2\delta_2). The relevant vacuum stability and naturalness problem in the parameter space of λm\lambda_m and δ2\delta_2 are studied as well. The model could alleviate these two problems in some parameter spaces under the constraints of electroweak precision observables and Higgs indirect search.Comment: 27 pages, 16 figures. Version accepted for publication in JHE

    Searching for cosmic string induced stochastic gravitational wave background with the Parkes Pulsar Timing Array

    Full text link
    We search for stochastic gravitational wave background emitted from cosmic strings using the Parkes Pulsar Timing Array data over 15 years. While we find that the common power-law excess revealed by several pulsar timing array experiments might be accounted for by the gravitational wave background from cosmic strings, the lack of the characteristic Hellings-Downs correlation cannot establish its physical origin yet. The constraints on the cosmic string model parameters are thus derived with conservative assumption that the common power-law excess is due to unknown background. Two representative cosmic string models with different loop distribution functions are considered. We obtain constraints on the dimensionless string tension parameter Gμ<10−11∼10−10G\mu<10^{-11}\sim10^{-10}, which is more stringent by two orders of magnitude than that obtained by the high-frequency LIGO-Virgo experiment for one model, and less stringent for the other. The results provide the chance to test the Grand unified theories, with the spontaneous symmetry breaking scale of U(1)U(1) being two-to-three orders of magnitude below 101610^{16} GeV. The pulsar timing array experiments are thus quite complementary to the LIGO-Virgo experiment in probing the cosmic strings and the underlying beyond standard model physics in the early Universe.Comment: 10 pages, 8 figures, 4 tables. Comments welcom
    • …
    corecore