44 research outputs found

    Simulation of the Grazing Effects on Grassland Aboveground Net Primary Production Using DNDC Model Combined with Time-Series Remote Sensing Data—A Case Study in Zoige Plateau, China

    No full text
    Measuring the impact of livestock grazing on grassland above-ground net primary production (ANPP) is essential for grass yield estimation and pasture management. However, since there is a lack of accurate and repeatable techniques to obtain the details of grazing locations and stocking rates at the regional scale, it is an extremely challenging task to study the influence of regional grazing on the grassland ANPP. Taking Zoige County as a case, this paper proposes an approach to quantify the spatial and temporal variation of grazing intensity and grazing period through time-series remote sensing data, simulated grassland ANPP through the denitrification and decomposition (DNDC) model, and then explores the impact of grazing on grassland ANPP. The result showed that the model-estimated ANPP while considering grazing had a significant relationship with the field-observed ANPP, with the coefficient of determination (R2) of 0.75, root mean square error (RMSE) of 122.86 kgC/ha, and average relative error (RE) of 8.77%. On the contrary, if grazing activity was not considered in simulation, a large uncertainty was found when the model-estimated ANPP was compared with the field observation, showing R2 of 0.4, RMSE of 211.51 kgC/ha, and average RE of 32.5%. For the whole area of Zoige County in 2012, the statistics of the estimation showed that the total regional ANPP was up to 3.815 × 105 tC, while the total regional ANPP, without considering grazing, would be overestimated by 44.4%, up to 5.51 × 105 tC. This indicates that the grazing parameters derived in this study could effectively improve the accuracy of ANPP simulation results. Therefore, it is feasible to combine time-series remote sensing data with the process model to simulate the grazing effects on grassland ANPP. However, some issues, such as selecting proper remote sensing data, improving the quality of model input parameters, collecting more field data, and exploring the data assimilation approaches, still should be considered in the future work

    Research Center for Digital Mountain and Remote Sensing Application, Institute of Mountain Hazards and Environment

    No full text

    An Improved Physics-Based Model for Topographic Correction of Landsat TM Images

    No full text
    Optical remotely sensed images in mountainous areas are subject to radiometric distortions induced by topographic effects, which need to be corrected before quantitative applications. Based on Li model and Sandmeier model, this paper proposed an improved physics-based model for the topographic correction of Landsat Thematic Mapper (TM) images. The model employed Normalized Difference Vegetation Index (NDVI) thresholds to approximately divide land targets into eleven groups, due to NDVI’s lower sensitivity to topography and its significant role in indicating land cover type. Within each group of terrestrial targets, corresponding MODIS BRDF (Bidirectional Reflectance Distribution Function) products were used to account for land surface’s BRDF effect, and topographic effects are corrected without Lambertian assumption. The methodology was tested with two TM scenes of severely rugged mountain areas acquired under different sun elevation angles. Results demonstrated that reflectance of sun-averted slopes was evidently enhanced, and the overall quality of images was improved with topographic effect being effectively suppressed. Correlation coefficients between Near Infra-Red band reflectance and illumination condition reduced almost to zero, and coefficients of variance also showed some reduction. By comparison with the other two physics-based models (Sandmeier model and Li model), the proposed model showed favorable results on two tested Landsat scenes. With the almost half-century accumulation of Landsat data and the successive launch and operation of Landsat 8, the improved model in this paper can be potentially helpful for the topographic correction of Landsat and Landsat-like data

    Development of Dense Time Series 30-m Image Products from the Chinese HJ-1A/B Constellation: A Case Study in Zoige Plateau, China

    No full text
    Time series remote sensing products with both fine spatial and dense temporal resolutions are urgently needed for many earth system studies. The development of small satellite constellations with identical sensors affords novel opportunities to provide such kind of earth observations. In this paper, a new dense time series 30-m image product was proposed respectively based on an 8-day, 16-day and monthly composition. The products were composited by the Charge Coupled Device (CCD) images from the 2-day revisit small satellite constellation for environmental monitoring and disaster mitigation of China (HJ-1A/B). Taking the Zoige plateau in China as a case area where it is covered by highly heterogeneous vegetation landscapes, a detailed methodology was introduced on how to use 183 scenes of CCD images in 2010 to create composite products. The quality of the HJ CCD composites was evaluated by inter-comparison with the monthly 30-m global Web-Enabled Landsat Data (WELD), 16-day 500-m MODIS NDVI, and 8-day 500-m MODIS surface reflectance products. Results showed that the radiometric consistency between HJ and WELD composited Top Of Atmosphere (TOA) reflectance was in good agreement except for May, June, July and August when more clouds and invalid data gaps appeared in WELD. Visual assessment and temporal profile analysis also revealed that HJ possessed better visual effects and temporal coherence than that of WELD. The comparison between HJ and MODIS products indicated that HJ composites were radiometrically consistent with MODIS products over areas consisting of large patches of homogeneous surface types, but can better reflect the detailed spatial differences in regions with heterogeneous landscapes. This paper highlights the potential of compositing HJ-1A/B CCD images, allowing for providing a cloud free, time-space consistent, 30-m spatial resolution, and dense in time series image product. Meanwhile, the proposed products could also be treated as a reference to generate regional or even global composited products for the on-going satellite constellations and even for the forthcoming satellite missions such as Sentinel-2A/B

    Cloud and Snow Discrimination for CCD Images of HJ-1A/B Constellation Based on Spectral Signature and Spatio-Temporal Context

    No full text
    It is highly desirable to accurately detect the clouds in satellite images before any kind of applications. However, clouds and snow discrimination in remote sensing images is a challenging task because of their similar spectral signature. The shortwave infrared (SWIR, e.g., Landsat TM 1.55–1.75 µm band) band is widely used for the separation of cloud and snow. However, for some sensors such as the CBERS-2 (China-Brazil Earth Resources Satellite), CBERS-4 and HJ-1A/B (HuanJing (HJ), which means environment in Chinese) that are designed without SWIR band, such methods are no longer practical. In this paper, a new practical method was proposed to discriminate clouds from snow through combining the spectral reflectance with the spatio-temporal contextual information. Taking the Mt. Gongga region, where there is frequent clouds and snow cover, in China as a case area, the detailed methodology was introduced on how to use the 181 scenes of HJ-1A/B CCD images in the year 2011 to discriminate clouds and snow in these images. Visual inspection revealed that clouds and snow pixels can be accurately separated by the proposed method. The pixel-level quantitative accuracy validation was conducted by comparing the detection results with the reference cloud masks generated by a random-tile validation scheme. The pixel-level validation results showed that the coefficient of determination (R2) between the reference cloud masks and the detection results was 0.95, and the average overall accuracy, precision and recall for clouds were 91.32%, 85.33% and 81.82%, respectively. The experimental results confirmed that the proposed method was effective at providing reasonable cloud mask for the SWIR-lacking HJ-1A/B CCD images. Since HJ-1A/B have been in orbit for over seven years and these satellites still run well, the proposed method is helpful for the cloud mask generation of the historical archive HJ-1A/B images and even similar sensors

    A review of land use/land cover change mapping in the China-Central Asia-West Asia economic corridor countries

    No full text
    Large-scale projects, such as the construction of railways and highways, usually cause an extensive Land Use Land Cover Change (LULCC). The China-Central Asia-West Asia Economic Corridor (CCAWAEC), one key large-scale project of the Belt and Road Initiative (BRI), covers a region that is home to more than 1.6 billion people. Although numerous studies have been conducted on strategies and the economic potential of the Economic Corridor, reviewing LULCC mapping studies in this area has not been studied. This study provides a comprehensive review of the recent research progress and discusses the challenges in LULCC monitoring and driving factors identifying in the study area. The review will be helpful for the decision-making of sustainable development and construction in the Economic Corridor. To this end, 350 peer-reviewed journal and conference papers, as well as book chapters were analyzed based on 17 attributes, such as main driving factors of LULCC, data collection methods, classification algorithms, and accuracy assessment methods. It was observed that: (1) rapid urbanization, industrialization, population growth, and climate change have been recognized as major causes of LULCC in the study area; (2) LULCC has, directly and indirectly, caused several environmental issues, such as biodiversity loss, air pollution, water pollution, desertification, and land degradation; (3) there is a lack of well-annotated national land use data in the region; (4) there is a lack of reliable training and reference datasets to accurately study the long-term LULCC in most parts of the study area; and (5) several technical issues still require more attention from the scientific community. Finally, several recommendations were proposed to address the identified issues

    Comparative Analysis on Two Schemes for Synthesizing the High Temporal Landsat-like NDVI Dataset Based on the STARFM Algorithm

    No full text
    The NDVI dataset with high temporal and spatial resolution (HTSN) is significant for extracting information about the phenological change of vegetation in regions with a complex earth surface. The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) has been successfully applied to synthesize the HTSN by fusing the data with different characteristics. Based on the model, there are two different schemes for synthesizing the HTSN. One scheme is that red reflectance and near-infrared (NIR) reflectance are synthesized, respectively, and the HTSN is then obtained through algebraic operation (Scheme 1); the other scheme is that the red and NIR reflectance are used to calculate NDVI, which is directly taken as input data to synthesize the HTSN (Scheme 2). In this paper, taking the hill areas in eastern Sichuan China as a case, the two schemes were compared with each other. Seven Landsat images and time-series MOD13Q1 datasets spanning from October 2001 to February 2003 were used as the test data. The results showed the prediction accuracies of both derived HTSNs by the two different schemes were generally in good agreement, and Scheme 2 was slightly superior to Scheme 1 (R2: 0.14 < Scheme 1 < 0.53; 0.15 < Scheme 2 < 0.53). Although the two HTSNs showed high temporal and spatial consistence, the small spatiotemporal difference between them had a different influence on different applications. The coincidence rate of cropping intensity extracted from two derived HTSNs was fairly high, reaching up to 93.86%, while the coincidence rate of crop peak dates (i.e., the emerging dates of peaks in an annual time-series NDVI curve) was only 70.95%. Therefore, it is deemed that Scheme 2 can replace Scheme 1 in the application of extracting cropping intensity, so that more calculation time and memory space can be saved. For extracting more quantitative crop phenological information like crop peak dates, more tests are still needed in order to compare the absolute accuracy for both schemes

    A Type of Scale-Oriented Terrain Pattern Derived from Normalized Topographic Relief Layers and Its Interpretation

    No full text
    Topographic scale characteristics contain valuable information for interpreting landform structures, which is crucial for understanding the spatial differentiation of landforms across large areas. However, the absence of parameters that specifically describe the topographic scale characteristics hinders the quantitative representation of regional topography from the perspective of spatial scales. In this study, false-color composite images were generated using normalized topographic relief data, showing a type of scale-oriented terrain pattern. Subsequent analysis indicated a direct correlation between the luminance of the patterns and the normalized topographic relief. Additionally, a linear correlation exists between the color of the patterns and the change rate in normalized topographic relief. Based on the analysis results, the issue of characterizing topographic scale effects was transformed into a problem of interpreting terrain patterns. The introduction of two parameters, flux and curl of topographic field, allowed for the interpretation of the terrain patterns. The assessment indicated that the calculated values of topographic field flux are equivalent to the luminance of the terrain patterns and the variations in the topographic field curl correspond with the spatial differentiation of colors in the terrain patterns. This study introduced a new approach to analyzing topographic scale characteristics, providing a pathway for quantitatively describing scale effects and automatically classifying landforms at a regional scale. Through exploratory analysis on artificially constructed simple DEMs and verification in four typical geomorphological regions of real terrain, it was shown that the terrain pattern method has better intuitiveness than the scale signature approach. It can reflect the scale characteristics of terrain in continuous space. Compared to the MTPCC image, the terrain parameters derived from the terrain pattern method further quantitatively describe the scale effects of the terrain

    Spatial Downscaling of Gross Primary Productivity Using Topographic and Vegetation Heterogeneity Information: A Case Study in the Gongga Mountain Region of China

    No full text
    Due to the spatial heterogeneity of land surfaces, downscaling is an important issue in the development of carbon cycle models when evaluating the role of ecosystems in the global carbon cycle. In this study, a downscaling algorithm was developed to model gross primary productivity (GPP) at 500 m in a time series over rugged terrain, which considered the effects of spatial heterogeneity on carbon flux simulations. This work was carried out for a mountainous area with an altitude ranging from 2606 to 4744 m over the Gongga Mountain (Sichuan Province, China). In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS) GPP product at 1 km served as the primary dataset for the downscaling algorithm, and the 500 m MODIS GPP product was used as the reference dataset to evaluate the downscaled GPP results. Moreover, in order to illustrate the advantages and benefits of the proposed downscaling method, the downscaled results in this work, along with ordinary kriging downscaled results, spline downscaled results and inverse distance weighted (IDW) downscaled results, were compared to the MODIS GPP at 500 m. The results showed that (1) the GPP difference between the 500 m MODIS GPP and the proposed downscaled GPP results was primarily in the range of [−1, 1], showing that both vegetation heterogeneity factors (i.e., LAI) and topographic factors (i.e., altitude, slope and aspect) were useful for GPP downscaling; (2) the proposed downscaled results (R2 = 0.89, RMSE = 1.03) had a stronger consistency with the 500 m MODIS GPP than those of the ordinary kriging downscaled results (R2 = 0.43, RMSE = 1.36), the spline downscaled results (R2 = 0.40, RMSE = 1.50) and the IDW downscaled results (R2 = 0.42, RMSE = 1.10) for all Julian days; and (3) the inconsistency between MODIS GPP at 500 m and 1 km increased with the increase in altitude and slope. The proposed downscaling algorithm could provide a reference when considering the effects of spatial heterogeneity on carbon flux simulations and retrieving other fine resolution ecological-physiology parameters (e.g., net primary productivity and evaporation) over topographically complex terrains
    corecore