26 research outputs found

    Expression of auxin-binding protein1 during plum fruit ontogeny supports the potential role of auxin in initiating and enhancing climacteric ripening

    Get PDF
    Auxin-binding protein1 (ABP1) is an active element involved in auxin signaling and plays critical roles in auxin-mediated plant development. Here, we report the isolation and characterization of a putative sequence from Prunus salicina L., designated PslABP1. The expected protein exhibits a similar molecular structure to that of well-characterized maize-ABP1; however, PslABP1 displays more sequence polarity in the active-binding site due to substitution of some crucial amino-acid residues predicted to be involved in auxin-binding. Further, PslABP1 expression was assessed throughout fruit ontogeny to determine its role in fruit development. Comparing the expression data with the physiological aspects that characterize fruit-development stages indicates that PslABP1 up-regulation is usually associated with the signature events that are triggered in an auxin-dependent manner such as floral induction, fruit initiation, embryogenesis, and cell division and elongation. However, the diversity in PslABP1 expression profile during the ripening process of early and late plum cultivars seems to be due to the variability of endogenous auxin levels among the two cultivars, which consequently can change the levels of autocatalytic ethylene available for the fruit to co-ordinate ripening. The effect of auxin on stimulating ethylene production and in regulating PslABP1 was investigated. Our data suggest that auxin is involved in the transition of the mature green fruit into the ripening phase and in enhancing the ripening process in both auxin- and ethylene-dependent manners thereafter

    Ethylene and carbon dioxide production by developing strawberries show a correlative pattern that is indicative of ripening climacteric fruit

    No full text
    Contains fulltext : 35876pub.pdf (publisher's version ) (Closed access)Laser photoacoustic spectroscopy continuously quantified the ethylene (C2H4) produced by strawberry flowers and fruits developing in planta. C2H4 was first detected as flower buds opened and exhibited diurnal oscillations (to approximately 200 pl flower(-1) h(-1)) before petal abscission. Exogenous application of silver thiosulphate (STS) to detached flowers inhibited petal abscission and flower senescence. In fruit, C2H4 production was maintained at a 'low level' (10-60 pl fruit(-1) h(-1)) until fruit expanded when levels increased in a diurnal pattern (to 200 pl fruit(-1) h(-1)). After expansion, C2H4 production declined to a low level until fruit attained the red-ripe stage for at least 24 h. After this time, C2H4 levels increased linearly (no diurnal fluctuation) to approximately 1 nL fruit(-1) h(-1). Twenty-four hours after the re-initiation of C2H4 production by red fruit, CO2 levels increased approximately three-fold, indicative of a respiratory climacteric. STS applied to fruits developing in planta and dissected fruit parts ex situ established that C2H4 production is regulated by negative feedback until fruits had expanded. The C2H4 produced by red-ripe fruit was regulated by positive feedback. Anti-1-amino-cyclopropane-1-carboxylic acid oxidase IgG localization identified immunoreactive antigens of 40 and 30 kDa (M-r) within the fruit achenes of expanding and red-ripe fruit. Analysis of dissected fruit showed that seed C2H4 accounts for 50% the C2H4 that is detectable from ripe fruit

    Prolonged root hypoxia effects on ethylene biosynthesis and perception in tomato fruit

    No full text
    The effects of root hypoxia on ethylene biosynthesis and perception have been documented in many vegetative organs, but not extensively in fruit. Therefore, in the present study, the effects of root hypoxia on ethylene biosynthesis and perception were investigated in tomato (Solanum lycopersicum L.) fruit at five stages of the maturation phase. Our results showed that root hypoxia does not affect ethylene biosynthesis in fruit, but stimulates its reception from other plant parts, as indicated by the increase in the expression of ethylene receptors ETR1 and 3
    corecore